matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesDreiecksmatrizen, positiveDiag
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Dreiecksmatrizen, positiveDiag
Dreiecksmatrizen, positiveDiag < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksmatrizen, positiveDiag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Mo 25.02.2013
Autor: Lu-

Aufgabe
Seien [mm] R_1 [/mm] , [mm] R_2 [/mm] zwei obere Dreiecksmatrizen mit positiven reellen Diagonaleinträgen.
Ich verstehe nicht wieso: [mm] (R_2 (R_1)^{-1} )^{\*} (R_2 (R_1)^{-1} [/mm] ) [mm] =I_n [/mm]

wobei [mm] \* [/mm] bedeutet: [mm] A^{\*} [/mm] = [mm] \overline{A}^t [/mm]
t.. transponiert

Kann mir da vlt wer weiterhelfen?
Ich weiß dass [mm] R_2 (R_1)^{-1} [/mm] selbst eine obere Dreiecksmatrizen mit positiven reellen Diagonaleinträgen ist, weil dies eine gruppe ist. Aber die Gültigkeit von obigen ist trotzdem nicht klar.
Danke ;)

        
Bezug
Dreiecksmatrizen, positiveDiag: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 26.02.2013
Autor: steppenhahn

Hallo,


> Seien [mm]R_1[/mm] , [mm]R_2[/mm] zwei obere Dreiecksmatrizen mit positiven
> reellen Diagonaleinträgen.
>  Ich verstehe nicht wieso: [mm](R_2 (R_1)^{-1} )^{\*} (R_2 (R_1)^{-1}[/mm]
> ) [mm]=I_n[/mm]
>  
> wobei [mm]\*[/mm] bedeutet: [mm]A^{\*}[/mm] = [mm]\overline{A}^t[/mm]
>  t.. transponiert


>  Ich weiß dass [mm]R_2 (R_1)^{-1}[/mm] selbst eine obere
> Dreiecksmatrizen mit positiven reellen Diagonaleinträgen
> ist, weil dies eine gruppe ist.

Genau. Das zeigt aber, dass der ganze zweite Faktor [mm] $(R_2 \cdot R_1^{-1})$ [/mm] eine obere Dreiecksmatrix ist. Die Inverse des zweiten Faktors muss also auch eine obere Dreiecksmatrix sein.

Es wird behauptet, dass bei dem Produkt die Identität herauskommt,
d.h. der erste Faktor [mm] $(R_2 \cdot R_1^{-1})^{\*}$ [/mm] müsste die Inverse zum ersten Faktor sein.

Aber der erste Faktor ist eine untere Dreiecksmatrix (wegen dem Transponieren). Die obige Formel gilt also im Allgemeinen nicht.

D.h. schaue nochmal nach, ob du die Formel richtig abgeschrieben hast.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]