matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelDreieckskonstruktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Dreieckskonstruktion
Dreieckskonstruktion < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieckskonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Do 19.04.2007
Autor: wonderwall

Aufgabe
von einem Dreieck kennt man den Eckpunkt A (-4/3), den Mittelpunkt E (6/3) der Seite BC und den Umkreispunkt U (3/2).
Fertige eine Zeichnung an.
Berechne B, C, Winkelmaße d Dreiecks und zeige die Eulersche Gerade (U, H, S, auf einer Geraden).

Hola
hmm, und wieder so ein bsp., das mich verwirrt.
also von E zu U den Vektor aufstellen, dann kippen zum Normalvektor oder? weil ich ja jetzt umgekehrt zu U-Konstruktion vorgehen muss.
[mm] UE\vektor{6 \\ 3} -\vektor{3 \\ 2}= \vektor{3 \\ 1} [/mm] kippen [mm] \vektor{-1 \\ 3} [/mm] dann hab ich normalvektor, aber jetzt?
Ich kann ja nicht davon ausgehen, dass das die fehlende länge auf C bzw. B ist, oder?
Außerdem kann ich es auch nicht mit Vektor von A schneiden, weil das ja nur "Punktvektor" ist. Hilfe, wie mach ich da weiter?

Danke lg ww

        
Bezug
Dreieckskonstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Do 19.04.2007
Autor: hase-hh

moin ww,

zunächst gehe ich davon aus, dass U der Umkreismittelpunkt ist?!

Dieser liegt definitionsgemäß auf der Seitenhalbierenden  (bzw. dem Schnittpunkt der Seitenhalbierenden) von BC. Das entnehme ich deinem Ansatz.

den Richtungsvektor der Geraden BC hast du dann mit dem Normalenvektor zum Richtungsvektor EU. Soweit kann ich das schon mal nachvollziehen.

Dann kannst Du auch die Geradengleichung für BC aufstellen, mit dem ermittelten Richutngsvektor und dem Punkt E. Auf der Geraden BC müssen ja dann auch die Eckpunkte B und C deines Dreiecks liegen.

Wenn U der Umkreismittelpunkt ist, dann ist der Abstand zwischen U und A / die Strecke AU der Radius r des Umkreises.

D.h. B und C müssen

1. auf der Geraden BC liegen
2. von U den Abstand r haben.

hoffe, das hilft weiter!

lg
wolfgang

Bezug
                
Bezug
Dreieckskonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Do 19.04.2007
Autor: wonderwall

hola

danke wolfgang für den Ansatz!
jeps, U ist der umkreismittelpunkt, ich werde es mal so, wie du es beschrieben hast ausprobieren, an den radius hab ich gar nicht gedacht *schäm*

lg ww

Bezug
                
Bezug
Dreieckskonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 19.04.2007
Autor: wonderwall

hola

Ich glaub, ich steh heut echt auf der leitung
Also ich hab mir nun UA ausgerechnt  Betrag davon ist  und das is der r also der Abstand aller Eckpunkt von U.
ok, dann hab ich die Gerade durch E mit Richtungsvektor aufgestellt, weil auf der ja B u C liegen: g: X=
soweit richtig, gell?
und nun?
wie bekomm ich nun beide vorgaben (abstand u gerade) zusammen? der abstand  gilt doch nur für UB u UC, aber hat sonst nichtx mit der gerade zu tun. HNF? wenn ja, wie? bin total *gaga* *sorry*

lg ww

Bezug
        
Bezug
Dreieckskonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Do 19.04.2007
Autor: wonderwall

hola

Ich glaub, ich steh heut echt auf der leitung
Also ich hab mir nun UA ausgerechnt [mm] \vektor{-4 \\ 3}-\vektor{3 \\ 2}=\vektor{-7 \\ 1}, [/mm] Betrag davon ist [mm] \wurzel{50} [/mm] und das is der r also der Abstand aller Eckpunkt von U.
ok, dann hab ich die Gerade durch E mit Richtungsvektor aufgestellt, weil auf der ja B u C liegen: g: X= [mm] \vektor{6 \\ 3}+t\vektor{-1 \\ 3}. [/mm]
soweit richtig, gell?
und nun?
wie bekomm ich nun beide vorgaben (abstand u gerade) zusammen? der abstand [mm] \wurzel{50} [/mm] gilt doch nur für UB u UC, aber hat sonst nichtx mit der gerade zu tun. HNF? wenn ja, wie? bin total *gaga* *sorry*

lg ww

Bezug
                
Bezug
Dreieckskonstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Do 19.04.2007
Autor: riwe

kreis um U mit radius r, geschnitten mit der zu UE snkrechten geraden durch E gibt B und C


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Dreieckskonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Do 19.04.2007
Autor: wonderwall

*patsch* ich bin so doof, dachte zuerst nämlich gleich an kreis, weil ich ja das dreieck graphisch auch so konstruier!

vielen Dank für den Stubser und die tolle zeichnung

lg ww

Bezug
                                
Bezug
Dreieckskonstruktion: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Fr 20.04.2007
Autor: wonderwall

Hola

sodala, ich bin ja noch die restlichen gesuchten WErte schuldig *g*

hier sind sie: C(4/9) B(8/-3); S(2,6periodisch/3), H(2/5)
[mm] \alpha= [/mm] 63,43  [mm] \beta= [/mm] 45°, [mm] \gamma=71,57° [/mm]

dann stell ich die Eulersche gerade auf,zb [mm] g:X=\vektor{2\\ 5}+\mu\vektor{1\\ -3} [/mm] und dann muss ich halt schauen, ob die Punkte wirklich oben liegen (da muss ich noch schauen, wie ich das mach)

lg ww

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]