matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDrehungen im R^3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Drehungen im R^3
Drehungen im R^3 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehungen im R^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mo 04.05.2009
Autor: Potus

Aufgabe
Betrachte [mm] \IR-Vektorraum \IR^3 [/mm] mit Standardskalarprodukt und Standardbasis [mm] e_1, e_2, e_3. [/mm]
Drehung um [mm] e_1 [/mm] um Winkel [mm] \phi [/mm] hat darstellende Matrix
[mm] M_(\phi)^x=\begin{pmatrix}1&0&0\\0&cos\phi&-sin\phi\\0&sin\phi&cos\phi \end{pmatrix} [/mm]
und analog um [mm] e_3 [/mm] um Winkel [mm] \psi [/mm]
[mm] M_(\psi)^z=\begin{pmatrix}cos\psi&-sin\psi&0\\sin\psi&cos\psi&0\\0&0&1 \end{pmatrix} [/mm]

Sein nun [mm] D:\IR^3->\IR^3 [/mm] eine beliebige Drehung und [mm] M_D [/mm] die darstellende Matrix von D. Beachte: Es gilt det [mm] M_D=1, [/mm] da D eine Drehung. Zeigen Sie:
(1) Es gilt [mm] M_D*e_3=M_(\psi)^z*M_(\phi)^x*e_3 [/mm] für geeignete Winkel
[mm] \phi\in\ [0,\pi] [/mm] und [mm] \psi\in\ [0,2\pi[. [/mm]
(2) Folgern Sie daraus, dass für geeignete Winkel [mm] \phi2\in\ [0,\pi] [/mm] und [mm] \psi,\theta\in\ [0,2\pi[ [/mm] gilt [mm] M_D=M_(\psi)^z*M_(\phi)^x*M_(\theta)^z. [/mm]

Zu (1) Ich habe bereits die rechte Seite der Gleichung ausgerechnet:
[mm] \begin{pmatrix}cos\psi&-sin\psi*cos\phi&sin\psi*sin\phi\\sin\psi&cos\psi*cos\phi&-cos\psi*sin\phi\\0&sin\phi&cos\phi \end{pmatrix}*e_3=\begin{pmatrix}sin\psi*sin\phi\\-cos\psi*sin\phi\\cos\phi\end{pmatrix} [/mm]
Meine erste Frage ist nun: Wie beweise ich dass dies für die allgemeine Drehung (linke Seite) gelten muss?
Was bedeutet diese Aussage überhaupt anschaulich?
Zu (2) Es ist schwer hier etwas zu sagen ohne, dass man die (1)
gelöst bzw. verstanden hat. Dass dies etwas mit den Euler-Winkeln zu tun hat weiß ich aber schon.

Und was bedeutet "geeignete Winkel"?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=121892]


        
Bezug
Drehungen im R^3: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Di 05.05.2009
Autor: zahlenspieler

Hallo,
> Betrachte [mm]\IR-Vektorraum \IR^3[/mm] mit Standardskalarprodukt
> und Standardbasis [mm]e_1, e_2, e_3.[/mm]
>  Drehung um [mm]e_1[/mm] um Winkel
> [mm]\phi[/mm] hat darstellende Matrix
>  
> [mm]M_(\phi)^x=\begin{pmatrix}1&0&0\\0&cos\phi&-sin\phi\\0&sin\phi&cos\phi \end{pmatrix}[/mm]
>  und analog um [mm]e_3[/mm] um Winkel [mm]\psi[/mm]
>  
> [mm]M_(\psi)^z=\begin{pmatrix}cos\psi&-sin\psi&0\\sin\psi&cos\psi&0\\0&0&1 \end{pmatrix}[/mm]
>  
> Sein nun [mm]D:\IR^3->\IR^3[/mm] eine beliebige Drehung und [mm]M_D[/mm] die
> darstellende Matrix von D. Beachte: Es gilt det [mm]M_D=1,[/mm] da D
> eine Drehung. Zeigen Sie:
>  (1) Es gilt [mm]M_D*e_3=M_(\psi)^z*M_(\phi)^x*e_3[/mm] für
> geeignete Winkel
>  [mm]\phi\in\ [0,\pi][/mm] und [mm]\psi\in\ [0,2\pi[.[/mm]
>  (2) Folgern Sie
> daraus, dass für geeignete Winkel [mm]\phi2\in\ [0,\pi][/mm] und
> [mm]\psi,\theta\in\ [0,2\pi[[/mm] gilt
> [mm]M_D=M_(\psi)^z*M_(\phi)^x*M_(\theta)^z.[/mm]
>  
> Zu (1) Ich habe bereits die rechte Seite der Gleichung
> ausgerechnet:
>  
> [mm]\begin{pmatrix}cos\psi&-sin\psi*cos\phi&sin\psi*sin\phi\\sin\psi&cos\psi*cos\phi&-cos\psi*sin\phi\\0&sin\phi&cos\phi \end{pmatrix}*e_3=\begin{pmatrix}sin\psi*sin\phi\\-cos\psi*sin\phi\\cos\phi\end{pmatrix}[/mm]
>  
> Meine erste Frage ist nun: Wie beweise ich dass dies für
> die allgemeine Drehung (linke Seite) gelten muss?
>  Was bedeutet diese Aussage überhaupt anschaulich?

Bei einer Drehung ändert sich ja die Länge nicht. Wenn also [mm]\vec x \in \IR^3 [/mm] der
Ortsvektor eines Punktes ist, dann liegt der Punkt, der den gedrehten Vektor [mm] \vec x[/mm] beschreibt, auf einer
Kugel mit dem Mittelpunkt [mm] (0,0,0)[/mm] und Radius [mm] \sqrt{| \vec x \dot \vec x|)[/mm].

Jetzt ist ja jede Drehung im [mm] \IR^3 [/mm] durch Hintereinanderausführen von Drehungen um [mm] e_1, e_2, e_3 [/mm] zu erreichen. Um den Vektor [mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm] um [mm] e_2 [/mm] zu drehen, braucht man ja nur die Drehungen um [mm] e_1, e_3 [/mm] (denn dabei bleibt die 2. Koordinate im gedrehten Vektor unverändert!). Die zugehörige Matrix wäre dann

[mm] \pmat{\cos{\phi} & 0 & -\sin{\phi} \\ 0 & 1 & 0 \\ \sin{\phi} & 0 \cos{\phi} }[/mm].

Diese Matrix erhältst Du aber, indem Du in einer der Drehungsmatrizen Spalten und Zeilen 1,2 (bzw. 2,3)
vertauschst.

Vielleicht hilfts ja weiter :-)
Gruß
Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]