matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikDrehimpulsoperator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Drehimpulsoperator
Drehimpulsoperator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehimpulsoperator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 04.06.2009
Autor: Phecda

Hallo
hab hier eine Frage bei der ich nicht so genau weiß, wie ich sie meistern soll.
Determine the Product [mm] $\Delta L_{x}\Delta_{y}$ [/mm] in a general $|l,m>$ state, where [mm] $L_{z}|l,m> [/mm] = hm|l,m>$ and
[mm] $L^2|l,m> [/mm] = h^2l(l+1)|l,m>$

Also ich glaube allgemein ist [mm] $\Delta [/mm] A = [mm] -^2$ [/mm]
oder? und wie kann ich nun meine Drehimpulsunschärfe ausrechnen?


        
Bezug
Drehimpulsoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Do 04.06.2009
Autor: rainerS

Hallo!

> Hallo
>  hab hier eine Frage bei der ich nicht so genau weiß, wie
> ich sie meistern soll.
>  Determine the Product [mm]\Delta L_{x}\Delta_{y}[/mm] in a general
> [mm]|l,m>[/mm] state, where [mm]L_{z}|l,m> = hm|l,m>[/mm] and
>  [mm]L^2|l,m> = h^2l(l+1)|l,m>[/mm]

Ich nehme an, du meinst [mm] $\Delta L_{x}\Delta L_{y}$ [/mm] (und [mm] $\hbar$, [/mm] nicht h)?

>  
> Also ich glaube allgemein ist [mm]\Delta A = -^2[/mm]
>  oder?

Nein, [mm] $(\Delta A)^2 [/mm] = [mm] -
^2$. [/mm]

> und wie kann ich nun meine Drehimpulsunschärfe ausrechnen?

Zunächst einmal gilt die Ungleichung:

[mm] \Delta L_{x}\Delta L_{y} \ge \bruch{1}{2} \left|<[L_x,L_y]>\right| [/mm]

Außerdem ist der Erwartungswert von [mm] $L_x$ [/mm] und [mm] $L_y$ [/mm] für die Zustände $|l,m>$ gleich 0. Das siehst du am Schnellsten mit Hilfe der
[]Leiteroperatoren. Damit kannst du auch die Erwartungswerte von [mm] $L_x^2$ [/mm] und [mm] $L_y^2$ [/mm] ausrechnen.

Etwas einfacher wird es, wenn du bedenkst, dass [mm] $L_x^2+L_y^2 [/mm] = [mm] L^2-L_z^2$ [/mm] ist, also

[mm] + = \hbar^2 ((l(l+1)-m^2) [/mm]
  
und dass die Zustände $|l,m>$ rotationssymmetrisch um die z-Achse sind.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]