Doppelsumme vereinfachen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:43 Mi 30.07.2014 | Autor: | julsch |
Hallo zusammen,
ich versuche momentan eine Doppelsumme zu vereinfachen. Ich habe eine Summe aus Kovarianzen [mm] Cov(z_{j},z_{k})=\gamma_{|j-k|}, [/mm] welche ich gerne vereinfachen möchte. Ich habe schon gezeigt, dass
[mm] \summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j} [/mm] = [mm] \summe_{j=1}^{t-1} [/mm] (t-j) [mm] \gamma_{j}, [/mm] wobei [mm] \gamma_{j}=Cov(z_{s},z_{s+j}) [/mm] ist. Dadurch, dass meine [mm] z_{t} [/mm] stationär sind, weiß ich, dass die Kovarianzen nur von dem Abstand j abhängen.
Ich möchte sowas jetzt auch für [mm] \summe_{i=1}^{t} \summe_{j=t+1}^{N} \gamma_{j-i} [/mm] zeigen. Ich habe mir schon für verschiedene t und N die Summe aufgeschrieben, komme jedoch nicht zu einem Ergebnis. Lässt sich diese Summe überhaupt so vereinfachen, dass ich nur noch eine Summe dort stehen habe bzw. meine Kovarianz nur noch vom Abstand abhängt, d.h. anstatt [mm] \gamma_{|j-i|} [/mm] nur noch [mm] \gamma_{j} [/mm] in der Summe vorkommt?
Ich hoffe, dass ich verständliche machen konnte, worum es geht.
Liebe Grüße,
julsch
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Mi 30.07.2014 | Autor: | Marcel |
Hallo julsch,
> Hallo zusammen,
>
> ich versuche momentan eine Doppelsumme zu vereinfachen. Ich
> habe eine Summe aus Kovarianzen
> [mm]Cov(z_{j},z_{k})=\gamma_{|j-k|},[/mm] welche ich gerne
> vereinfachen möchte. Ich habe schon gezeigt, dass
> [mm]\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}[/mm] = [mm]\summe_{j=1}^{t-1}[/mm] (t-j) [mm]\gamma_{j},[/mm]
ich zeig' Dir einfach mal, wie man das "direkt sehen" kann:
Wir bilden eine Matrix, nach rechts tragen wir die [mm] $j=1\,...,t-1$ [/mm] ab, und nach
unten schreiben wir die Summanden der zugehörigen inneren Summe. Aus
*Zugehörigkeitsgründen* (das siehst Du später sicher selbst, was ich damit
meine) werde ich auch "additive Nullen" ergänzen.
Also genauer: Wir schreiben eine [mm] $(t-1)\,$ $\times$ $(t-1)\,$ [/mm] Matrix [mm] $A=(a_{j,k})$ [/mm] wie folgt
[mm] $A=\pmat{\gamma_1 & \gamma_1 & \gamma_1 & ... & \gamma_1 & \gamma_1 & \gamma_1 \\ \gamma_2 & \gamma_2& \gamma_2& ...& $\gamma_2 & \gamma_2 & 0\\\gamma_3 & \gamma_3& \gamma_3& ...& \gamma_3 & 0 & 0 \\ ... \\\gamma_{t-2} & \gamma_{t-2} & 0 & ... & 0 & 0 & 0\\ \gamma_{t-1} & 0 & 0 & ... & 0 & 0 & 0}$
[/mm]
Wenn Du willst, kannst Du Dir mal genau die [mm] $a_{j,k}$ [/mm] definieren. Aber das ist
nicht so das Wichtige. Das, was Du Dir klarmachen solltest, ist:
[mm] $\bullet$ [/mm] Summe über die erste Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{1}+1}^t \gamma_{k-\red{1}}$
[/mm]
[mm] $\bullet$ [/mm] Summe über die zweite Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{2}+1}^t \gamma_{k-\red{2}}$ [/mm] (eigentlich ist es die letzte Summe +0, aber additive Nullen ändern nix am Wert!)
[mm] $\bullet$ [/mm] Summe über die dritte Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{3}+1}^t \gamma_{k-\red{3}}$ [/mm] (eigentlich ist es die letzte Summe +0+0, aber additive Nullen ändern nix am Wert!)
Die Summe
[mm] $\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}$
[/mm]
ist also die Summe über alle Spaltensummen von [mm] $A\,.$ [/mm] Das ist (wegen
Kommutativität und Assoziativität der Addition) identisch mit der Summe
aller Matrixeinträge der Matrix [mm] $A\,.$ [/mm] Die Summe über alle Matrixeinträge
der Matrix [mm] $A\,$ [/mm] kann man auch "mit Zeilensummen" berechnen.
Die erste Zeilensumme ist
[mm] $(t-1)*\gamma_1\,,$
[/mm]
die zweite ist
[mm] $(t-2)*\gamma_2$
[/mm]
etc. pp.. So gelangt man schließlich zu Deinem Term
[mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j\,.$
[/mm]
Das kann man übrigens noch umschreiben:
[mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j=\left(\sum_{j=1}^{t-1} (t*\gamma_j)\right)-\sum_{j=1}^{t-1}(j*\gamma_j)=\left(t*\sum_{j=1}^{t-1}\gamma_j\right)-\sum_{j=1}^{t-1}(j*\gamma_j)\,.$
[/mm]
Jedenfalls: Schau' mal, ob Du nicht im Prinzip analog zu oben vorgehen
kannst. Gibt's eigentlich irgendwelche Nebenbedingungen an [mm] $N\,$?
[/mm]
Gruß,
Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:55 Mi 30.07.2014 | Autor: | Marcel |
Hallo julsch,
das [mm] $t\,$ [/mm] ist ja fest. Ich erstelle für
[mm] $\sum_{i=1}^t\sum_{j=t+1}^N \gamma_{j-i}$
[/mm]
eine [mm] $t\,$ $\times$ [/mm] $(N-1)$-Matrix. Aus Gründen der Demonstration wähle ich
[mm] $t=5\,,$ [/mm] ich denke, Du kannst das dann nachher allgemeiner machen.
Also:
[mm] $\pmat{ 0 & 0 & 0 & 0 & \gamma_1 \\ 0 & 0 & 0 & \gamma_2 & \gamma_2\\ 0 & 0 & \gamma_3 & \gamma_3 & \gamma_3\\0 & \gamma_4 & \gamma_4 & \gamma_4 & \gamma_4\\\gamma_5 & \gamma_5 & \gamma_5 & \gamma_5 & \gamma_5\\\gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 \\ ... & ... & ... & ... & ...\\ \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5}\\ \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & 0\\ \gamma_{N-3} & \gamma_{N-3} & \gamma_{N-3} & 0 & 0\\\\ \gamma_{N-2} & \gamma_{N-2} & 0 & 0 & 0\\ \gamma_{N-1} & 0 & 0 & 0 & 0}$
[/mm]
Die Summe aller Spaltensummen ist Deine gesuchte Summe. Du siehst mit
Zeilensummen:
Sie ist identisch mit
[mm] $\gamma_1+2\gamma_2+3\gamma_3+4\gamma_4+5*(\gamma_5+\gamma_6+...+\gamma_{N-5})+4\gamma_{N-4}+3\gamma_{N-3}+2\gamma_{N-2}+\gamma_{N-1}=\sum_{k=1}^{t-1} \{k*(\gamma_k+\gamma_{N-k}\}+t*\sum_{k=t}^{N-t}\gamma_k\,,$
[/mm]
oder Du kannst das auch schreiben
[mm] $=\left(\sum_{k=1}^{t-1} (k*\gamma_k)\right)+\left(\sum_{k=t}^{N-t} (t*\gamma_k)\right)+\sum_{k=N-t+1}^{N-1} [/mm] ( [mm] (N-k)\gamma_k)$
[/mm]
Ob das das ist, was Du willst und gebrauchen kannst, weiß ich nun nicht.
Falls ja: Überprüfe das bitte auch nochmal (für verschiedene [mm] $t\,,$ [/mm] insbesondere
auch für spezielle [mm] $t\,$ [/mm] wie [mm] $t=1\,$ [/mm] bzw. [mm] $t=N-1\,$).
[/mm]
Gruß,
Marcel
|
|
|
|