matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungDoppelspiegelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Doppelspiegelung
Doppelspiegelung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelspiegelung: Keine Idee
Status: (Frage) beantwortet Status 
Datum: 10:00 Mi 13.04.2005
Autor: MisterSarotti

Wie ihr seht bin ich voll verzweifelt. Ich mache mir wohl zu viele Gedanken ;-( Ich hoffe ich bin nicht zu nervig!

Trotzdem dann noch eine kleine Frage. Ich habe eine megalange Aufgabe und komme nur an einem Punkt nicht weiter. Ich habe drei Punkte gegeben: G(2/-1/-2), S(1/-2/2) und N(2/2/1). Ich sollte die Urprungsgerade aufstellen. g=OG und s=OS wobei s senkrecht auf g steht. Dann soltle ich die Abbilungsmatrix Tg für die Achsenspiegelung eines beliebigen Punktes P an der Geraden g bilden. Alles soweit gut! Dann das gleiche Spiel mit einem beliebigen Punktes P an der Geraden s (Abbilungsmatrix Ts). Als nächstes sollten die Resultate untersucht werden: T1=Tg*Ts und T2=Ts*Tg. Es kam raus, dass beide Abbildungen gleich sind. Nun aber zu der Aufgabe, die ich nicht verstanden habe, oder besser, die ich nicht lösen kann:

Angenommen, ein beliebiger Punkt P werde an g gespiegelt und der so entstandene Bildpunkt nochmals an s. Das Resultat dieser Doppelspiegelung sei der Punkt P´´. Interpretieren Sie ihre Entdeckung aus 5.4 für diese Doppelspielgelung!

5.4 ist das Resultat der Abblingsmatrizen. Oben im Text beschrieben.



        
Bezug
Doppelspiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Mi 13.04.2005
Autor: banachella

Hallo MisterSarotti!

Zuerstmal: Kopf hoch! Meistens ist Mathe nur halb so schlimm, wie man auf den ersten Blick meint... :-)

Ich bin ein bisschen unglücklich mit dem Begriff Achsenspiegelung. Ich würde das eigentlich nur im 2-dimensionalen so bezeichnen. Deshalb vorweg erstmal, wie ich mit dem Begriff umgegangen bin:
Die Achsenspiegelung [mm] $T_g$ [/mm] ist festgelegt durch
[mm] $T_g\big(\overrightarrow{0G}\big)=\overrightarrow{0G},\quad T_g\big(\overrightarrow{0S}\big)=-\overrightarrow{0S},\quad T_g\big(\overrightarrow{0N}\big)=-\overrightarrow{0N}$. [/mm]
Das ergibt sich deshalb so, weil [mm] $\overrightarrow{0S},\overrightarrow{0N}\perp\overrightarrow{0G}$. [/mm]

Als Interpretation fiele mir höchstens folgendes ein:
Grundsätzlich gilt für Spiegelungen - also auch für [mm] $T_g, T_s$ [/mm] - dass [mm] $T_g^{-1}=T_g$. [/mm] Oder anders ausgedrückt: [mm] $T_g\big(T_g(x)\big)=x$ [/mm] für jedes [mm] $x\in\IR^{3}$. [/mm]
Und weil [mm] $(T_gT_s)(T_gT_s)\stackrel{5.4}=T_gT_sT_sT_g=id$ [/mm] ist, ist auch [mm] $T_gT_s$ [/mm] eine Spiegelung, nicht nur eine Doppelspiegelung. Und wenn du dir nochmal die Wirkung auf $G,S$ und $N$ ansiehst, kannst du auch sehen, woran gespiegelt wird.

Hoffentlich hilft dir das ein bisschen weiter!

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]