matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDoppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Doppelintegral
Doppelintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Fr 10.07.2009
Autor: dupline

Aufgabe
Man berechne folgendes Integral:
[mm] \integral_{A}^{}{\wurzel{x^2+y}}d(x,y) [/mm] wobei [mm] A=\{(x,y)\in \IR^2| 0\le y \le 4, \wurzel{y}\le x\le 2\} [/mm]

Hallo zusammen,

ich hänge bei diesem Integral fest. Meine Vorgehensweise bisher:
[mm] \integral_{\wurzel{y}}^{2}\integral_{0}^{4}{\wurzel{x^2+y}} [/mm] d(y)d(x) = [mm] \integral_{\wurzel{y}}^{2}[ \bruch{2}{3} (x^2+y)^\bruch{3}{2}] [/mm] in den Grenzen 0 bis 4  dx
... letztendlich komme ich zu
[mm] \bruch{2}{3}\integral_{\wurzel{y}}^{2} \wurzel{(x^2+4)^3} [/mm] - [mm] x^3 [/mm] dx
und jetzt komm ich nicht mehr weiter, da ich nicht weiß, wie ich [mm] \wurzel{(x^2+4)^3} [/mm] integrieren soll.

Danke schon jetzt für eure Antworten

        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Fr 10.07.2009
Autor: Al-Chwarizmi


> Man berechne folgendes Integral:
>  [mm]\integral_{A}^{}{\wurzel{x^2+y}}\,d(x,y)[/mm] wobei [mm]A=\{(x,y)\in \IR^2| 0\le y \le 4, \wurzel{y}\le x\le 2\}[/mm]
>  
> Hallo zusammen,
>  
> ich hänge bei diesem Integral fest. Meine Vorgehensweise
> bisher:
>  
> [mm]\integral_{\wurzel{y}}^{2}\integral_{0}^{4}{\wurzel{x^2+y}}\,dy\,dx[/mm]

ich denke, da müßte die Reihenfolge der Integra-
tionen umgekehrt sein:

   [mm]\integral_{y=0}^{4}dy\integral_{x=\wurzel{y}}^{2}{\wurzel{x^2+y}}\,dx[/mm]

... und dann wird das innere Integral schwierig !
  
= [mm]\integral_{\wurzel{y}}^{2}[ \bruch{2}{3} (x^2+y)^\bruch{3}{2}][/mm]

> in den Grenzen 0 bis 4  dx
>  ... letztendlich komme ich zu
> [mm]\bruch{2}{3}\integral_{\wurzel{y}}^{2}( \wurzel{(x^2+4)^3}-x^3)\,dx[/mm]
>  und jetzt komm ich nicht mehr weiter, da ich nicht weiß,
> wie ich [mm]\wurzel{(x^2+4)^3}[/mm] integrieren soll.


Hallo dupline,

ich denke, die Schwierigkeit liegt bei der
Beschreibung des Integrationsgebiets
und in der Anordnung der Integrationen.
Mittels einer Skizze kam ich dazu, das
Integral so zu schreiben:

     $\ I\ [mm] =\integral_{x=0}^{2}dx\integral_{y=0}^{x^2}\sqrt{x^2+y\,}\ \,dy$ [/mm]


LG    Al-Chw.

Bezug
                
Bezug
Doppelintegral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Fr 10.07.2009
Autor: dupline

Oh super, so komm ich auf ein Ergebnis, Danke.

Ich wäre selbst nicht auf die Idee gekommen, die Grenzen anders darzustellen... aber Übung macht den Meister :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]