Dominated Convergence - Folge < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Sa 28.05.2022 | Autor: | Jellal |
Guten Tag!
Seien [mm] a_{n} [/mm] und [mm] b_{n} [/mm] nicht-negative Folgen mit [mm] b_{n}\to b<\infty [/mm] und [mm] \summe_{n}a_{n}<\infty.
[/mm]
Behauptung: Aus dem Dominated Convergence Theorem folgt
[mm] \limes_{n\rightarrow\infty} \summe_{j=1}^{n}a_{j}b_{n-j} [/mm] = b [mm] \summe_{n}a_{n}.
[/mm]
Ich muss begründen, dass ich den Limes in die Summe ziehen darf, aber ich habe Schwierigkeiten, das Theorem anzuwenden, da es ja im Kontext von Maßen und Sigma-Algebren "lebt" und hier davon gar keine Rede ist.
Da [mm] b_{n} [/mm] konvergiert, muss die Folge beschränkt sein.
Wenn ich die Folgenglieder formal als Funktionen auffasse,
[mm] b_{n}: \IR \to \IR, [/mm] x [mm] \mapsto b_{n}(x)=b(n) \in \IR., [/mm]
dann habe ich eine beschraenkte, punktweise konvergierende Funktionenfolge. Sei nun g eine Funktion mit [mm] b_{n}
Ich brauche noch, dass g integrierbar ist. Aber bezüglich welchen Maßes? Die Summe oben sieht ja aus wie ein Lebesgue-Integral einfacher Funktionen. Also muss das Maß irgendwie aus der Folge [mm] a_{n} [/mm] gebastelt werden.
Kann mir wer helfen, das Puzzle zusammenzusetzen?
vG.
Jellal
|
|
|
|
Hallo,
du kannst das diskrete Maß auf [mm] $\mathbb{Z}$ [/mm] betrachten mit [mm] $\mu(n)=1$ [/mm] für alle [mm] $n\in\mathbb{Z}$.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:59 Mi 01.06.2022 | Autor: | Jellal |
Danke für den Tipp.
Ich habe jetzt eine Lösung, aber sie ist bestimmt etwas umständlicher, als das, was du gemeint hast.
Ich übe mich mal am formalen Aufschrieb:
Wir fassen die Folgen [mm] a_{n} [/mm] und [mm] b_{n} [/mm] als Funktionen von [mm] \IZ [/mm] nach [mm] \IR_{+} [/mm] auf und schreiben [mm] a(n)=a_{n} [/mm] und [mm] b(n)=b_{n} [/mm] für [mm] n\in \IZ_{+} [/mm] und a(n)=b(n)=0 für n<0.
Wir nehmen den Maßraum [mm] (\IZ, 2^{\IZ}, \mu) [/mm] an, mit [mm] \mu({z})=a(z).
[/mm]
Laut Voraussetzung haben wir [mm] \mu(\IZ)=\summe_{i=0}^{\infty}a(i)<\infty.
[/mm]
Betrachte nun die Funktionenfolge [mm] S_{n}: \IZ \to \IR, [/mm] z [mm] \mapsto S_{n}(z)=\summe_{i=0}^{\infty} b(n-i)I_{i}(z) [/mm] mit Indikator [mm] I_{A}(z). [/mm]
Dann ist [mm] S_{n} [/mm] für [mm] n\to\infty [/mm] punktweise konvergent gegen [mm] S(z)=\summe_{i=0}^{\infty}b I_{i}(z)=b.
[/mm]
Dann kann ich die Summe aus der Aufgabenstellung als Integral auffassen und es gilt mit dem dom. conv. Theorem
[mm] \limes_{n\rightarrow\infty} \summe_{i=0}^{\infty} [/mm] a(i)b(n-i) = [mm] \limes_{n\rightarrow\infty} \integral_{\IZ}^{}{S_{n}(z) d\mu(z)} [/mm] = [mm] \integral_{\IZ}^{}{S(z) d\mu(z)}=b\mu(\IZ)=b \summe_{i=0}^{\infty}a(i) [/mm] < [mm] \infty.
[/mm]
Hierbei ist S(z) selbst die dominierende integrierbare Funktion.
Stimmt das so?
|
|
|
|
|
> Danke für den Tipp.
>
> Ich habe jetzt eine Lösung, aber sie ist bestimmt etwas
> umständlicher, als das, was du gemeint hast.
>
> Ich übe mich mal am formalen Aufschrieb:
>
> Wir fassen die Folgen [mm]a_{n}[/mm] und [mm]b_{n}[/mm] als Funktionen von
> [mm]\IZ[/mm] nach [mm]\IR_{+}[/mm] auf und schreiben [mm]a(n)=a_{n}[/mm] und
> [mm]b(n)=b_{n}[/mm] für [mm]n\in \IZ_{+}[/mm] und a(n)=b(n)=0 für n<0.
> Wir nehmen den Maßraum [mm](\IZ, 2^{\IZ}, \mu)[/mm] an, mit
> [mm]\mu({z})=a(z).[/mm]
> Laut Voraussetzung haben wir
> [mm]\mu(\IZ)=\summe_{i=0}^{\infty}a(i)<\infty.[/mm]
>
> Betrachte nun die Funktionenfolge [mm]S_{n}: \IZ \to \IR,[/mm] z
> [mm]\mapsto S_{n}(z)=\summe_{i=0}^{\infty} b(n-i)I_{i}(z)[/mm] mit
> Indikator [mm]I_{A}(z).[/mm]
> Dann ist [mm]S_{n}[/mm] für [mm]n\to\infty[/mm] punktweise konvergent gegen
> [mm]S(z)=\summe_{i=0}^{\infty}b I_{i}(z)=b.[/mm]
>
> Dann kann ich die Summe aus der Aufgabenstellung als
> Integral auffassen und es gilt mit dem dom. conv. Theorem
> [mm]\limes_{n\rightarrow\infty} \summe_{i=0}^{\infty}[/mm]
> a(i)b(n-i) = [mm]\limes_{n\rightarrow\infty} \integral_{\IZ}^{}{S_{n}(z) d\mu(z)}[/mm]
> = [mm]\integral_{\IZ}^{}{S(z) d\mu(z)}=b\mu(\IZ)=b \summe_{i=0}^{\infty}a(i)[/mm]
> < [mm]\infty.[/mm]
>
> Hierbei ist S(z) selbst die dominierende integrierbare
> Funktion.
>
> Stimmt das so?
Hallo,
das erscheint mir weitgehend korrekt. Allerdings müsstest du bei der Majorante das Maximum der [mm] $b_i$ [/mm] als Faktor berücksichtigen. Ansonsten läuft den Beweis letztendlich auf das gleiche wie der von mir vorgeschlage Ansatz hinaus. Ob du die [mm] $a_i$ [/mm] "mit in das Maß packst" oder als integrierbare Funktion bezüglich des Maßes mit [mm] $\mu(i)=1$ [/mm] für alle i betrachtest, macht in der Argumentation keinen großen Unterschied.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:40 Mi 01.06.2022 | Autor: | Jellal |
Ich verstehe!
Vielen Dank dir, donquijote!
|
|
|
|