Distribution und Schwartzfkt < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:20 Di 13.07.2010 | Autor: | Phorkyas |
Aufgabe | Für [mm]k \le n , \varphi \in S(R^n)[/mm] definieren wir:
[mm]u(\varphi)=\int_{R^k}\varphi(x_1,...,x_k,0,...,0)dx_1...dx_k[/mm]
Beweise:
[mm]u\in S'(R^n)[/mm] und
[mm]\hat{u}(\varphi)=(2\pi)^{k-n/2}\int_{R^{n-k}}\varphi(0,...,0,x_{k+1},...,x_n)dx_{k+1}...dx_n[/mm] |
Grüsse Matheraum!
Es sind ja zwei dinge zu zeigen. Das u eine Distribution ist und die Fouriertrafo.
Zu 1)
Die Eigenschaft [mm]u(\lambda_1 \varphi_1 +\lambda_2 \varphi_2)=\lambda_1u(\varphi_1)+\lambda_2u(\varphi_2)[/mm] ist schnell gezeigt.
Jetzt muss ich noch zeigen, dass:
[mm]\varphi_l \to \varphi \Rightarrow lim_{l \to \infty}u(\varphi_l)=u(\varphi)[/mm]
Ich denke hier muss man das majorisierte Konvergenzkriterium anwenden um den Limes in das Integral zu ziehen. Dazu bräuchte ich aber noch eine majorisiernde Funktion für phi.
Oder zeigt man das anders?
Zu 2)
Als erstes kann man die Fouriereigenschaft der Distributionen benutzen:
[mm]\hat{u}(\varphi)=u(\hat{\varphi})=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^n}\varphi(x_1,...,x_k,0,...,0)e^{-i}dx dk_1...dk_k[/mm]
Hier kann man nun noch den Satz von Fubini anwenden um die e-Funktion zuerst über k zu integrieren, aber das Integral [mm]\int_{R^k}e^{-i}dk_1...dk_k[/mm] divergiert, daher muss ich wohl schon hier irgendetwas falsch gemacht haben.
Für jedliche Hilfe wäre ich sehr dankbar.
Grüsse
Phorkyas
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:40 Mi 14.07.2010 | Autor: | rainerS |
Hallo!
Zur 2. Frage:
> Als erstes kann man die Fouriereigenschaft der
> Distributionen benutzen:
> [mm]\hat{u}(\varphi)=u(\hat{\varphi})=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^n}\varphi(x_1,...,x_k,0,...,0)e^{-i}dx dk_1...dk_k[/mm]
>
Das scheint mir falsch zu sein. Müsste das nicht
[mm] u(\hat{\varphi}) = \int_{\IR^{n-k}}\hat{\varphi}(0,\dots,0,x_{k+1},\dots,x_n)dx_{k+1}\dots dx_n = (2\pi)^{-n/2}\int_{\IR^{n-k}} \int_{\IR^n} \varphi(y_1,\dots,y_n) e^{-i(y_{k+1}x_{k+1}+\dots+y_nx_n)} dy_1\dots dy_n dx_{k+1}\dots dx_n[/mm]
heißen?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:26 Do 15.07.2010 | Autor: | Phorkyas |
Grüße
Du hast recht, da war ein fehler drin. Allerdings hast du nun auch die Definition falsch eingesetzt.
Ich habe den zweiten Teil der Frage inzwischen auch gelöst. Es muss sein:
[mm]\hat{u}(\varphi)=u(\hat{\varphi})=\int_{R^k}\hat{\varphi}(k_1,...,k_k,0,...,0)dk_1...dk_k=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^n}\varphi(x_1,...,x_n)e^{-i(x_1k_1,...,x_k k_k)}dx dk_1...dk_k=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^{n-k}}\varphi(x_1,...,x_n)dx_{k+1}dx_n \int_{R^k}e^{-i(x_1k_1,...,x_k k_k)}dk_1...dk_k dx_1...dx_k[/mm]
Weiterhin ist (das war mir bisher nicht klar):
[mm]\bruch{1}{2\pi}\int_{R}e^{ixk}dk=\delta(x)\Rightarrow \int_{R^k}e^{-i(x_1k_1,...,x_k k_k)}dk_1...dk_k=(2\pi)^k\delta(x_1)...\delta(x_k)[/mm]
Und damit:
[mm]\hat{u}(\varphi)=(2\pi)^{k-n/2}\int_{R^{n-k}}\int_{R^k}\varphi(x_1,...,x_n)\delta(x_1)...\delta(x_k)dx_1...dx_k dx_{k+1}...dx_n =(2\pi)^{k-n/2}\int_{n-k}\varphi(0,...,0,x_k+1,...,x_n)dx_{k+1}...dx_n[/mm]
Was zu zeigen war.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:17 Do 15.07.2010 | Autor: | rainerS |
Hallo!
> Grüße
>
> Du hast recht, da war ein fehler drin. Allerdings hast du
> nun auch die Definition falsch eingesetzt.
Ohja, stimmt...blödes cut-and-waste
> Ich habe den zweiten Teil der Frage inzwischen auch
> gelöst. Es muss sein:
>
> [mm]\hat{u}(\varphi)=u(\hat{\varphi})=\int_{R^k}\hat{\varphi}(k_1,...,k_k,0,...,0)dk_1...dk_k=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^n}\varphi(x_1,...,x_n)e^{-i(x_1k_1,...,x_k k_k)}dx dk_1...dk_k=\bruch{1}{(2\pi)^{n/2}} \int_{R^k}\int_{R^{n-k}}\varphi(x_1,...,x_n)dx_{k+1}dx_n \int_{R^k}e^{-i(x_1k_1,...,x_k k_k)}dk_1...dk_k dx_1...dx_k[/mm]
>
> Weiterhin ist (das war mir bisher nicht klar):
> [mm]\bruch{1}{2\pi}\int_{R}e^{ixk}dk=\delta(x)\Rightarrow \int_{R^k}e^{-i(x_1k_1,...,x_k k_k)}dk_1...dk_k=(2\pi)^k\delta(x_1)...\delta(x_k)[/mm]
Genau: 1 ist die Fouriertransformierte der [mm] $\delta$-Distribution.
[/mm]
>
> Und damit:
>
> [mm]\hat{u}(\varphi)=(2\pi)^{k-n/2}\int_{R^{n-k}}\int_{R^k}\varphi(x_1,...,x_n)\delta(x_1)...\delta(x_k)dx_1...dx_k dx_{k+1}...dx_n =(2\pi)^{k-n/2}\int_{n-k}\varphi(0,...,0,x_k+1,...,x_n)dx_{k+1}...dx_n[/mm]
>
> Was zu zeigen war.
Viele Grüße
Rainer
|
|
|
|
|
Grüße
WIe ich in der Mitteilung geschrieben habe ist der Zweite Teil der Frage jetzt gelöst.
Ich wäre froh, wenn mir jetzt noch jemand:
1: Besätigen könnte, dass meine Lösung so Hand und Fuß hat.
2: Mir jemand noch bei der ersten Frage hilft, denn die Lösung der zweiten Frage ist nur korrekt wenn man die erste hat (sonnst darf man ja die Fouriereigenschaft von Distributionen nicht anwenden)
Danke nochmals an alle die sich hier Engagieren und an den Fragen anderer Mitarbeiten.
Gruß
Phorkyas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mo 19.07.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:31 Do 15.07.2010 | Autor: | rainerS |
Hallo!
> Für [mm]k \le n , \varphi \in S(R^n)[/mm] definieren wir:
>
> [mm]u(\varphi)=\int_{R^k}\varphi(x_1,...,x_k,0,...,0)dx_1...dx_k[/mm]
>
> Beweise:
> [mm]u\in S'(R^n)[/mm] und
>
> [mm]\hat{u}(\varphi)=(2\pi)^{k-n/2}\int_{R^{n-k}}\varphi(0,...,0,x_{k+1},...,x_n)dx_{k+1}...dx_n[/mm]
> Grüsse Matheraum!
>
> Es sind ja zwei dinge zu zeigen. Das u eine Distribution
> ist und die Fouriertrafo.
> Zu 1)
> Die Eigenschaft [mm]u(\lambda_1 \varphi_1 +\lambda_2 \varphi_2)=\lambda_1u(\varphi_1)+\lambda_2u(\varphi_2)[/mm]
> ist schnell gezeigt.
> Jetzt muss ich noch zeigen, dass:
> [mm]\varphi_l \to \varphi \Rightarrow lim_{l \to \infty}u(\varphi_l)=u(\varphi)[/mm]
>
> Ich denke hier muss man das majorisierte
> Konvergenzkriterium anwenden um den Limes in das Integral
> zu ziehen. Dazu bräuchte ich aber noch eine majorisiernde
> Funktion für phi.
> Oder zeigt man das anders?
u ist keine reguläre Distribution. Genauer gesagt, u entsteht aus dem Produkt von $(n-k)$ 1-dim. [mm] $\delta$-Distributionen $\delta(x_{k+1})\dots\delta(x_n)$. [/mm]
Hilft dir das weiter?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:04 Mo 19.07.2010 | Autor: | Phorkyas |
Mein Problem dabei ist, das die Einsfunktion selbst keine Distribution induziert.
Es würde ja genügen zu zeigen:
[mm]\int_{R^k}\int_{R^{n-k}}\varphi(x_1,...,x_n)\delta(x_{k+1})...\delta(x_n)dx_{k+1}...dx_n dx_1...dx_k=U'_1(\varphi(x_1,...,x_k,0,...,0))[/mm]
Was aber nur gelten würde, wenn
[mm]\int_{R^{n-k}}\bruch{1}{(1+|x|)^k}dx_1...dx_k<\infty[/mm]
gelten würde, was aber nicht stimmt.
Also bringt mir die Tatsache, das [mm]\varphi[/mm] zusammengesetzt ist aus n-k Deltadistributionen nichts, da der k-dimensionale Anteil der NICHT von den Deltafunktionen berührt wird die Probleme macht.
Wie also ist zu zeigen, dass trotzdem eine Distribution vorliegt?
Danke wiederum für die Antworten
Phorkyas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:58 Mi 21.07.2010 | Autor: | Phorkyas |
ok falls es noch jemanden interessieren sollte:
Es war doch der erste Ansatz der richtige.
Man zeigt also Linearität und nutzt dann majorisierte Konvergenz mithilfe des Satzes, das für jede Schwartzfunktion f(x) eine Konstante c existiert, sodass [mm] f(x)<=c/(1+x^2). [/mm] Diese majorante ist integrierbar (Arcustangens) und damit darf man die majorisierte Konvergenz anwenden.
Grüsse
Phorkyas
P.S.
Warum kann ich meine eigene Frage nicht beantworten? Ich kann nur Mitteilungen schreieben. Jetzt wird sie ablaufen was irgendwie nicht sinn der Sache ist oder?
|
|
|
|