Diskr. W-Raum Anzahl Zufallsv. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:10 Fr 02.03.2018 | Autor: | Jellal |
Hallo zusammen,
hier eine weitere Frage:
Ich lese zur Zeit das Buch von Norbert Henze, das mmn ziemlich gut zum Einstieg und zur Einsteigervorlesung Stochastik ist.
Gerade bin ich beim schwachen Gesetz der großen Zahlen, das er für einen diskreten W-Raum angibt:
Seien [mm] X_{i} [/mm] unabh. Zufallszahlen auf diskretem W-Raum [mm] (\Omega,P) [/mm] mit gleichem Erwartungswert [mm] \mu [/mm] und gleicher Varianz [mm] \sigma^{2}. [/mm] Dann gilt für jedes [mm] \epsilon>0:
[/mm]
[mm] \limes_{n\rightarrow\infty}P(|\bruch{1}{n}*\summe_{i=1}^{n}X_{i}-\mu|\ge\epsilon)=0
[/mm]
Nach dem Beweis macht er die folgende Bemerkung:
"An dieser Stelle sei angemerkt, dass wir im Rahmen diskreter W-Räume nur Modelle für endlich viele stochastisch unabhängige Zufallsvariablen mit gleicher Verteilung konstruieren können".
Daher müsse man P und [mm] X_{i} [/mm] oben auch noch mit n indizieren.
Ich weiß nicht, wo er diese Aussage her hat, gefunden habe ich sie aus vorigen Kapiteln auf die Schnelle nicht und erinnern tu ich mich auch nicht daran.
Kann mir das wer erläutern?
Gruß
Jellal
|
|
|
|
Hiho,
die Aussage ist ziemlich "schlampig" geschrieben.
Nehmen wir als Wahrscheinlichkeitsraum bspw. [mm] $\left(\IN,\mathcal{P}(\IN),\delta_0\right)$, [/mm] also die natürlichen Zahlen mit dem Dirac-Maß in $0$ und betrachte als Zufallsvariable die konstante Nullfunktion, also $X [mm] \equiv [/mm] 0$ so hat offensichtlich jede Zufallsvariable $Y: [mm] \IN \to \IN$ [/mm] mit $Y(0) = 0$ dieselbe Verteilung wie X und alle diese ZV sind unabhängig… und davon gibt es unendlich viele.
Aber: Ich vermute er bezieht die Aussage auf Wahrscheinlichkeitsräume mit Elementen mit positiver W-Keit, also falls für alle [mm] $\omega \in \Omega$ [/mm] gilt, dass [mm] $P(\{\omega\}) [/mm] > 0$
Nichtsdestotrotz halte ich die Aussage gerade für ziemlich gewagt…
Mir gelingt es aber weder die Aussage zu zeigen noch ein Gegenbeispiel zu konstruieren… ich meld mich dazu später nochmal.
edit: Ok… die Aussage ist wohl schlecht kopiert (im Buch) und soll eigentlich sowas sein, wie die Aussage hier im PDF ab Seite 30, Satz 3.27 und Bemerkung 3.28.
Das entspricht exakt dem, was bei dir im Buch steht… nur deutlich besser formuliert und damit hoffentlich für dich verständlicher.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 23:44 Fr 02.03.2018 | Autor: | Jellal |
Hallo Gonozal,
danke dir, ja, da ist es besser erklärt. Der Henze ist normalerweise sehr anfängerfreundlich und die Bemerkungen helfen meist zu besserem Verständnis, aber da war er etwas grobschlächtig. Ich dachte, ich hätte irgendwas "triviales" übersehen...
Ich habe hierbei eine andere Frage zu dem sGdgZ, und zwar zu einer Ergänzung des Beweises aus meinem Skript. Ich glaube, für dich ist das trivial, es sieht aus als müsste man nur das bisher bewiesene richtig verwenden, aber ich komm nicht drauf.
Ich schreibe mal runter, was da steht:
Zuerst ein Lemma:
Für Zufallsvariablen (ZV) [mm] Z_{n}: \Omega [/mm] -> [mm] \IR [/mm] gelte
i) [mm] E(Z_{n})->\mu [/mm] für n gegen [mm] \infty
[/mm]
ii) [mm] Var(Z_{n})->0 [/mm] für n gegen [mm] \infty
[/mm]
Dann folgt: [mm] P(\{|Z_{n}-\mu|\ge\epsilon\})->0 [/mm] für n gegen [mm] \infty
[/mm]
Jetzt sGdgZ:
[mm] x_{n}: \Omega [/mm] -> [mm] \IR [/mm] Folge pw. unkorrelierter ZV mit [mm] Var(X_{n})<\infty [/mm] f. alle n.
a) Aus d. Bed. [mm] \bruch{1}{n^{2}}\summe_{i=1}^{n}Var(x_{i}) [/mm] ->0 für n gegen [mm] \infty [/mm] folgt: [mm] P(\{|\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-E(x_{i})|\ge\epsilon\})->0 [/mm] für n gegen [mm] \infty
[/mm]
b) [mm] x_{n} [/mm] seien zusätzlich (ich nehme an nicht zusätzlich zu a) sondern zur anfänglichen Satzvorraussetzung) identisch verteilt, so gilt f. alle [mm] \epsilon [/mm] >0:
[mm] P(\{|\bruch{1}{n}\summe_{i=1}^{n}(x_{i} -E(x_{1}|\ge\epsilon\})->0 [/mm] für n gegen [mm] \infty.
[/mm]
Bew: a) [mm] Z_{n}:=\bruch{1}{n}\summe_{i=1}^{n}(x_{i}-E(x_{i}))
[/mm]
=> [mm] Var(Z_{n})=\bruch{1}{n^{2}}\summe_{i=1}^{n}Var(x_{i}) [/mm] (keine Kovarianzen da alle x unkorreliert).
[mm] E(Z_{n}) [/mm] ist 0, dann folgt mit der Tschebyscheff Ungl:
[mm] P(\{|Z_{n}|\ge\epsilon\})\le \bruch{1}{\epsilon^{2} n^{2}}\summe_{i=1}^{n}Var(x_{i}) [/mm] --> 0 nach Vor.
b) geht so ähnlich mit [mm] Z_{n}:=\bruch{1}{n}\summe_{i=1}^{n}x_{i} -E(x_{1})
[/mm]
Bis hier alles verstanden.
Nun sagt er aber: a) gilt sogar auch, wenn [mm] Cov(x_{i},x_{j})\le [/mm] 0
Dann will er dafür wohl ein Beispeil machen:
Sei [mm] Y_{n} [/mm] hypergeometrisch verteilt, [mm] ~H(N_{n},M_{n},n), p=\bruch{M_{n}}{N_{n}}.
[/mm]
Dann ist [mm] \bruch{1}{n}Y_{n} [/mm] --> p (P stochastische Konvergenz gegen p), da [mm] Var(\bruch{1}{n}Y_{n})< \bruch{1}{n}p(1-p)
[/mm]
Wenn man weiß, wie E und Var der Hypergeom. Vert. aussehen, verständlich.
Dann kommt nur noch:
"Begründung: [mm] Y_{n}=\summe_{i=1}^{n}X_{i} [/mm] mit [mm] X_{i} [/mm] als Indikatoren dafür, dass das i-te Stück "defekt" ist.
=> [mm] Cov(x_{i},x_{j})\le [/mm] 0"
Wie er das jetzt gefolgert hat, keine Ahnung. Hat er den Satz a) angewendet oder wie?
Sorry für den langen Post ~~
Viele Grüße
Jellal
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:22 Mo 05.03.2018 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|