matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDirichlet
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Dirichlet
Dirichlet < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Fr 23.10.2009
Autor: Sacha

Aufgabe
Es sei die Dirichlet-Funktion
     [mm] f(x)=\begin{cases} 1, & \mbox{für } x \in [0,1]/\IQ\\ 0, & \mbox{sonst}\end{cases} [/mm]

Kann mir jemand sagen wie ich zeigen kann, wieso diese Funktion Lebesque-integrierbar ist?
Damit eine Funktion Lebesgue-integrierbar ist, muss ja Ober und Unterintegral übereinstimmen, doch was lässt sich als solche identifizieren? Auf Wikipedia habe ich unter Dirichlet-Funktion gesehen wie das mittels Masstheorie geht, doch gehts auch mit Ober und Unterintegral?

        
Bezug
Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Fr 23.10.2009
Autor: Al-Chwarizmi


> Es sei die Dirichlet-Funktion

>       [mm]f(x)=\begin{cases} 1, & \mbox{für } x \in [0,1]\cap\IQ & \mbox{sonst}\end{cases}[/mm]
>  
> Kann mir jemand sagen wie ich zeigen kann, wieso diese
> Funktion Lebesgue-integrierbar ist?
> Damit eine Funktion Lebesgue-integrierbar ist, muss ja
> Ober und Unterintegral übereinstimmen, doch was lässt
> sich als solche identifizieren? Auf Wikipedia habe ich
> unter Dirichlet-Funktion gesehen wie das mittels
> Masstheorie geht, doch gehts auch mit Ober und
> Unterintegral?


Mit "Ober- und Unterintegral" meinst du wohl die
Obersummen und Untersummen (und die dann
folgende Grenzwertbildung), wie man sie beim
Riemannschen Integral verwendet.
Genau dies versagt aber bei der Dirichletfunktion.
Hier sind alle Obersummen und auch ihr Limes
gleich Eins, die Untersummen und ihr Limes gleich
Null. Konsequenz: die Dirichletfunktion ist nicht
Riemann-integrierbar.
In der Definition des Lebesgue-Integrals braucht
man den Begriff des []Lebesgue-Maßes und damit ein
Stück Maßtheorie.
Nachlesen kannst du dies auch da: []Dirichlet-Funktion


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]