matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDimensionsformeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Dimensionsformeln
Dimensionsformeln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionsformeln: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:04 So 27.02.2011
Autor: pyw

Aufgabe
Gegeben seien die linearen Abbildungen [mm] f,g:\IR^8\to\IR^4 [/mm] mit [mm] \dim(Kern(f)\cap [/mm] Kern(g))=3.
Man zeige:
Es gibt ein [mm] v\in\IR^8 [/mm] mit g(v)=-f(v), wobei [mm] g(v)\neq0. [/mm]



Hallo,

es ist [mm] \dim(Kern(f)+ Kern(g))\leq [/mm] 8, da [mm] U=Kern(f)Kern(g)\subseteq\IR^8 [/mm] ein Unterraum ist.
(+ steht für die "Vereinigungssumme", wenn man das so sagen darf)

Die Dimensionsformel für Untervektorräume liefert
[mm] 8\geq\dim(U)= \dim(Kern(f))+ \dim(Kern(g))- \dim(Kern(f)\cap Kern(g))=\dim(Kern(f))+ \dim(Kern(g))-3 [/mm]
Demzufolge ist [mm] \dim(Kern(f))+ \dim(Kern(g))\leq [/mm] 11

Nun die beiden Dimensionsformeln für lineare Abbildungen (*):
[mm] \dim(Bild(f))+\dim(Kern(f))=8, \qquad \dim(Bild(g))+\dim(Kern(g))=8=\dim\IR^8 [/mm]

Gleichungen * zusammenaddieren:
[mm] 16=\dim(Bild(f))+\dim(Bild(g))+\dim(Kern(f))+\dim(Kern(g)) [/mm]

Wegen [mm] \dim(Kern(f)) +\dim(Kern(g))\leq11 [/mm] folgt nun:
[mm] \dim(Bild(f))+\dim(Bild(g))\geq5 [/mm]

Insbesondere ist [mm] \dim(Bild(f)\cap Bild(g))\geq1, [/mm] denn jedes Bild hat maximal Dimension 4.

So weit, so gut. ich glaube, bis hierhin ist alles richtig. Leider komme ich gerade nicht darauf, wie es weiter geht.
Würde mich sehr freuen, wenn jemand helfen kann!

Danke.

mfg
pyw



        
Bezug
Dimensionsformeln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 27.02.2011
Autor: kamaleonti


> Gegeben seien die linearen Abbildungen [mm]f,g:\IR^8\to\IR^4[/mm]
> mit [mm]\dim(Kern(f)\cap[/mm] Kern(g))=3.
>  Man zeige:
>  Es gibt ein [mm]v\in\IR^8[/mm] mit g(v)=-f(v), wobei [mm]g(v)\neq0.[/mm]

andere Idee:
Betrachte die lineare Abbildung [mm] h:\IR^8\to\IR^4, [/mm] h(v)=f(v)+g(v)

Wegen der Dimformel für lin. Abbildungen hat der Kern von h Dimension [mm] \geq [/mm] 4.

Von f und g hat sich jedoch nur ein Kern von Dimension 3 "vererbt", d.h. Es gibt [mm] v\in\IR^8 [/mm] mit [mm] $v\in Kern(h)\backslash[Kern(f)\cap [/mm] Kern(g)]$ mit g(v)=-f(v) bzw. h(v)=f(v)+g(v)=0 und [mm] g(v)\neq0 [/mm]

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]