Dimension Multilinearformen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:29 Do 14.01.2010 | Autor: | valoo |
Aufgabe | Beweisen Sie, dass [mm] dim(Mult_{n}(K^{m})=m^{n} [/mm] und zeigen Sie außerdem [mm] dim(Alt_{n}(K^{m})=\vektor{m \\ n}. [/mm] Bei Zweiterem können Sie zunächst [mm] K=\IQ [/mm] annehmen. |
Dass [mm] Mult_{n}(K^{m}) [/mm] diese Dimension hat ist anschaulich klar, denn [mm] K^{m} [/mm] hat ja gerade die Dimension m und man nimmt den ja n-mal.
Aber wie beweist man diese Tatsache? Mit einem Isomorphismus? Ich habs ja versucht, aber ich bin mir nicht sicher, ob man den wie folgt konstruieren kann und dann noch zu beweisen, dass es einer ist...
[mm] \phi:K^{m^{n}} \to Mult_{n}(K^{m})
[/mm]
[mm] \vektor{x_{1} \\ ... \\ x_{m^{n} }}\mapsto (\alpha: (v_{1}, [/mm] ..., [mm] v_{n})\mapsto (\produkt_{i=1}^{m^{n}}x_{i})*\produkt_{i=1}^{n}(\produkt_{j=1}^{m}v_{i,j}))
[/mm]
Wäre [mm] \alpha [/mm] überhaupt eine n-Linearform des [mm] K^{m}? [/mm] Ich muss nämlich zugeben, dass ich diese Sache mit der Multilinearität noch nicht ganz verstanden habe.
Oder kann ich voraussetzen, dass [mm] Mult_{n}(K^{m})\cong (K^{m})^{n}, [/mm] da ja dies die Definitionsmenge ist und die Zielmenge die Dimension 1 hat. Oder geht das bei Multilinearität nicht? Zu zeigen, dass [mm] (K^{m})^{n}\cong K^{m^{n}} [/mm] sollte dann ja nicht so schwer sein.
Aber die zweite Aufgabe ist sicherlich noch etwas schwerer. Da geht es doch bestimmt um Kombinatorik. Ich weiß, dass alternierende Multilinearformen ein n-Tupel mit zwei gleichen Vektoren aus [mm] K^{m} [/mm] auf 0 abbilden, aber warum ist jetzt die Dimension wie angegeben?
Und warum soll man das erstmal mit [mm] \IQ [/mm] machen? Hängt das damit zusammen, dass [mm] char(K)\not=2 [/mm] sein sollte? Wobei ich nicht mal weiß, was das bedeutet.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:34 Do 14.01.2010 | Autor: | pelzig |
Sei [mm] $\phi\in\operatorname{Mult}_n(\IK^m)$ [/mm] und [mm] $(x^1,...,x^n)\in(\IK^m)^n$ [/mm] mit [mm] $x^i=\sum_{j_i=1}^mx^i_{j_i}e_{j_i}$ [/mm] für [mm]1\le i\le n[/mm]. Dann gilt wegen der Multilinearität von [mm] $\phi$: $$\phi(x^1,...,x^n)=\phi\left(\sum_{j_1=1}^mx^1_{j_1}e_{j_1},\ ...\ ,\sum_{j_n=1}^mx^n_{j_n}e_{j_n}\right)=\sum_{1\le j_1,...,j_n\le m}x^1_{j_1}\cdot ...\cdot x^n_{j_n}\cdot\ \phi(e_{j_1},...,e_{j_n})$$ [/mm] D.h. [mm] $\phi$ [/mm] ist vollständig bestimmt durch seine Werte auf den Tupeln [mm] $(e_{j_1},...,e_{j_n})$ [/mm] für [mm]1\le j_1,...,j_n\le m[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
- und davon gibt es genau $m^n$ viele. Hier kann man jetzt einen Isomorphismus $\operatorname{Mult}_n(\IK^m)\to\IK^{m^n}$ konstruieren, dann ist es auch richtig streng mathematisch bewiesen.
Genauso verfährt man mit $\psi\in\operatorname{Alt}_n(\IK^m)$, dann erhält man mit den gleichen Bezeichnern wie oben: $$\psi(x^1,...,x^n)=\sum_{1\le j_1<...<j_n\le m}\left(\sum_{\sigma\in S_n}\operatorname{sgn}(\sigma)x^1_{j_{\sigma(1)}}\cdot...\cdot x^n_{j_{\sigma(n)}\right)\psi(e_{j_1},...,e_{j_n}).$$ Der entscheidende Unterschied ist nun, dass wir $\psi$ nur noch auf den Tupeln $(e_{j_1},...,e_{j_n})$ mit [mm]1\le j_1<...
Gruß, Robert
|
|
|
|