matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeDimension
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Dimension
Dimension < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Do 25.01.2007
Autor: hase-hh

Aufgabe
Gegeben sind die Vektoren [mm] \vec{a}=\vektor{-1\\ 1\\ 2}, \vec{b}=\vektor{2\\ -1\\ 3} [/mm] und [mm] \vec{c}= \vektor{5\\ -3\\ 4} [/mm]

a) Untersuchen Sie diese Vektoren auf lineare Abhängigkeit bzw. Unabhängigkeit.
b) Welche Dimension hat der Vektorraum, der von den drei Vektoren erzeugt wird?

Moin,

zu a)

[mm] r1*\vec{a} [/mm] + [mm] r2*\vec{b} +r3\vec{c} [/mm] = [mm] \vec{0} [/mm]

[mm] \pmat{ -1 & 2 & 5\\ 1 & -1 & -3\\ 2 & 3 & 4} [/mm]

nach umformen:

[mm] \pmat{ -1 & 2 & 5\\ 0 & 1 & 2\\ 0 & 0 & 0} [/mm]

d.h. die vektoren sind linear abhängig. ok.

jetzt weiß ich aber nicht wie ich am besten weiter mache, um die dimension zu bestimmen.

kann man das aus dem LGS erkennen? muss ich einzeln durchprüfen

ob

1) [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]

2) [mm] \vec{a} [/mm] und [mm] \vec{c} [/mm]

3) [mm] \vec{b} [/mm] und [mm] \vec{c} [/mm]

linear abhängig/unabhängig sind

oder gibt es einen kürzeren Weg?















        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 25.01.2007
Autor: Walde

Hi wolfgang,

das macht man, indem man den Rang der Matrix bestimmt. []hier steht  alles, was du wissen musst.

LG walde

Bezug
                
Bezug
Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Do 25.01.2007
Autor: hase-hh

moin walde,

vielen dank!

habe mir mal den link angeschaut. daraus entnehme ich, dass ich den rang und damit die dimension direkt aus dem umgeformten LGS ablesen kann (s. Beispiel dort). Das ist gut!

Außerdem erspart es mir mglw. die ein oder andere frage zum "rang einer matrix".

danke & gruß
wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]