matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension
Dimension < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 14:12 Mo 11.12.2006
Autor: doppelxchromosom

Aufgabe
Sei U der Unterraum des [mm] \IR^{4}, [/mm] der von den Vektoren (1,1,2,0), (2,1,0,1),(0,0,2,1) und (1,0,0,2) erzeugt wird. Man bestimme dimU.

Hallo, ich war leider eine zeitlang krank und komme nun mit den übungsaufgaben nicht ganz klar.
wenn ich das richtig verstanden habe, dann ist dimU die Anzahl der Elemente der Basis von U.
Wie bekomme ich denn die Basis von U?

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mo 11.12.2006
Autor: zahlenspieler

Hallo doppelxchromosom,
> Sei U der Unterraum des [mm]\IR^{4},[/mm] der von den Vektoren
> (1,1,2,0), (2,1,0,1),(0,0,2,1) und (1,0,0,2) erzeugt wird.
> Man bestimme dimU.
>  Hallo, ich war leider eine zeitlang krank und komme nun
> mit den übungsaufgaben nicht ganz klar.
>  wenn ich das richtig verstanden habe, dann ist dimU die
> Anzahl der Elemente der Basis von U.
>  Wie bekomme ich denn die Basis von U?

Du müßtest hier nur schauen, ob unter den 4 gegebenen Vektoren *linear abhängige* sind; d.h. ob dieser Vektor Linearkombination aus den übrigen Vektoren ist. Die linear abhängigen schmeißt Du raus.
Weil aber hier nur nach der Anzahl linear unabhängiger Vektoren gefragt ist ist:
Fasse die Vektoren zu einer Matrix zusammen. Dann formst Du diese Matrix mittels Zeilen- bzw. Spaltenumformungen um. Dann zählst Du einfach die von 0 verschiedenen Zeilen bzw. Spalten; und das ist dann die gesuchte Lösung.
auf www.mathebank.de gibts dazu einen Artikel, in dem das an einem Beispiel durchgerechnet wird.
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]