matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzieren zweier Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Differenzieren zweier Funktion
Differenzieren zweier Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren zweier Funktion: Hilferuf
Status: (Frage) beantwortet Status 
Datum: 21:34 So 25.06.2006
Autor: cleophus

Aufgabe 1
y= [mm] ae^{-5x} [/mm] - [mm] be^{-cosx} [/mm]

Aufgabe 2
y= ln [mm] {\bruch{(1+x)}{(1-x)}} [/mm]

Hallo! Ich suche jemanden, der mir bei dem Rechenweg dieser Differenzierung helfen kann, ich bin mir nämlich nach zig Anläufen nicht mal mehr sicher, welche Ableitungsregeln ich benutzen muss!

Bei 1) spuckt mir mein Taschenrechner (TI voyage 200)  eine Lösung aus, die ich nur zum Teil nachvollziehen kann, aber für [mm] b*e^{-cosx} [/mm] kriege ich [mm] (\bruch{-b*\pi*sinx*e^{-cosx})}{180} [/mm] - kann mir das jemand erklären?

Zu 2) wüsste ich gerne, welche Ableitungsregeln ich da überhaupt anwenden muss. (lnx) abgeleitet ist [mm] \bruch1x, [/mm] soweit weiß ich's noch, ((1+x)*(1-x)) ist als x zu betrachten, richtig? Aber muss ich da die Produktregel an wenden, oder erstmal ausmultiplizieren? Jedenfalls komme ich auch da nicht auf das Ergebnis des Rechners: [mm] \bruch{-2 }{(x-1)*(x+1)} [/mm]

Das Ganze ist Klausurvorbereitung und es wäre echt ne große Hilfe, wenn ihr mir einen kleinen Denkanstoß geben könntet. Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzieren zweier Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 So 25.06.2006
Autor: MarkusB

Hallo.

Zu 2): Teile den ln ersteimal auf: ln(1+x) - ln(1-x)  und das ergibt nach x differenziert: 1/(1+x) + 1/(1-x) auf gleichen Nenner gebracht kommt das raus was dein TR ausgibt. Warum? Weil: ln(u) nach u differenziert gleich 1/u ist (für u=1+x substituieren => es kommt 1/(x+1) raus).

Zu 1): was ist [mm] e^x [/mm] abgeleitet (nach x)? nach [mm] e^x [/mm] * 1 (innere Ableitung!)und wenn du e^(-5x) bekommst du -5 * e^(-5x). Für e^(-cos(x)) musst du die innere Ableitung zweimal bilden: e^(-cos(x)) * sin(x) * 1. Fertig.

Ich hoffe ich konnte helfen.

Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]