matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzieren von Funftionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differenzieren von Funftionen
Differenzieren von Funftionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren von Funftionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 12.03.2008
Autor: chege22

Hallo erstmal. Muss verschiedene Funktionen ableiten. Bei manchen weiss ich nicht weiter, bei machen bin ich mir nicht sicher ob sie richtig sind. Wäre über Hilfe dankbar...

(i) g(x)=cos(4x)              
    g´x=-4sin(4x)

(ii) [mm] k(x)=x^7 [/mm] cos(4x) ; jetzt habe ich die Produktregel benutzt und

     k´(x)= [mm] 7x^6 [/mm] * cos(4x) + [mm] x^7 [/mm] *(-4sin(4x)erhalten. Müsste eigentlich       richtig sein, aber wie gehts jetzt weiter?

(iii) k(t)= e^3t / [mm] 4-t^2 [/mm]
      k´(t)= 3e^3t [mm] *(4-t^2)- [/mm] e^3t *(-2t) / ( [mm] 4-t^2)^2 [/mm] , und jetzt??

(iv) f(x)= sin (6x)
      f´(x)= 6 cos (6x)

(v) k(x)= ln ( 3 sin (6x))       (0<x<1/6pie)   Hier komme ich gar nicht weiter...

        
Bezug
Differenzieren von Funftionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 12.03.2008
Autor: Event_Horizon

Hallo!

> Hallo erstmal. Muss verschiedene Funktionen ableiten. Bei
> manchen weiss ich nicht weiter, bei machen bin ich mir
> nicht sicher ob sie richtig sind. Wäre über Hilfe
> dankbar...
>  
> (i) g(x)=cos(4x)              
> g´x=-4sin(4x)

Korrekt!

>  
> (ii) [mm]k(x)=x^7[/mm] cos(4x) ; jetzt habe ich die Produktregel
> benutzt und
>  
> k´(x)= [mm]7x^6[/mm] * cos(4x) + [mm]x^7[/mm] *(-4sin(4x)erhalten. Müsste
> eigentlich       richtig sein, aber wie gehts jetzt
> weiter?

Das ist auch korrekt. Allerdings sehe ich nicht, daß man da großartig was vereinfachen könnte. Du könntest [mm] x^6 [/mm] ausklammern, mehr aber nicht.

>  
> (iii) k(t)= e^3t / [mm]4-t^2[/mm]
>        k´(t)= 3e^3t [mm]*(4-t^2)-[/mm] e^3t *(-2t) / ( [mm]4-t^2)^2[/mm] ,
> und jetzt??

Erstmal etwas leserlicher:

[mm] $k(t)=\frac{e^{3t} }{4-t^2}$ [/mm]

[mm] $k'(t)=\frac{3e^{3t} *(4-t^2)- e^{3t} *(-2t) }{(4-t^2)^2}$ [/mm]

Hier könntest du zunächst den e-Term ausklammern. Wenn du den Zähler dann noch ein wenig ordnest, könntest du versuchen, ihn in Linearfaktoren zu zerlegen, und zu schaun, ob sich dann was mit dem Nenner kürzt. Mir scheint das hier aber nicht der Fall zu sein.

Allerdings, wenn du noch höhere Ableitungen berechnen mußt, ist die Version mit dem ausgeklammerten e schon das beste, eine Faktorisierung des Zählers macht das weitere Ableiten nur noch komplizierter.

>  
> (iv) f(x)= sin (6x)
>        f´(x)= 6 cos (6x)

Korrekt!

>  
> (v) k(x)= ln ( 3 sin (6x))       (0<x<1/6pie)   Hier komme
> ich gar nicht weiter...

Nun, hier mußt du die Kettenregel anwenden. Innere mal äußere:

$k(x)= [mm] \ln [/mm] ( 3 [mm] \sin [/mm] (6x))$
$k'(x)= [3 [mm] \sin (6x)]'*\ln'( [/mm] 3 [mm] \sin [/mm] (6x))$

Du mußt den Term in den eckigen Klammern noch ableiten. Und du mußt rausfinden, wie die Ableitung vom ln ist, und da dann das, was ursprünglich in den Klammern des ln stand, einsetzen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]