matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferenzieren einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Differenzieren einer Funktion
Differenzieren einer Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Do 14.12.2006
Autor: McMuskel

Aufgabe
Differenzieren sie die folgende Funktion nach der unabhängigen Variablen.
[mm] y(x)=ln^2(3x^2-6)^3 [/mm]
Summen möglichst weitgehend in Produkte verwandeln, Brüche kürzen!

Erstes Problem:
Kann ich die Funktion so vereinfachen?

[mm] y(x)=ln^2(3x^2-6)^3=ln(3x^2-6)^{3*2}=ln(3x^2-6)^6 [/mm]

Ich habe das jetzt mal so angenommen und mit der Kettenregel abgeleitet:

[mm] y'(x)=6*ln(3x^2-6)^5*\bruch{1}{3x^2-6}*6x [/mm]

[mm] y'(x)=\bruch{36*ln(3x^2-6)^5}{3x^2-6}*x [/mm]

Jo, soweit mein Lösungsweg. Allerdings stimmt mein Ergebnis nicht mit der richtigen Lösung überein.
Wäre cool wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 14.12.2006
Autor: Gonozal_IX

Hallo,

deine "Vereinfachung" geht so nicht, weil sich das Quadrat auf den ln bezieht und nicht auf das Argument im ln :-)

Ich würds so vereinfachen:

[mm]y(x)=ln^2(3x^2-6)^3[/mm]

[mm]= (ln(3x^2 - 6)^3)^2[/mm] (so ists gemeint)

[mm]=(3ln(3x^2-6))^2[/mm] (Logarithmussgesetz)

[mm]= (3 ln(3*(x^2-2)))^2 [/mm]

[mm]=(3 (ln(3) + ln(x^2-2)))^2 [/mm]

[mm]= 9*(ln3 + ln(x^2-2))^2 [/mm]

[mm]= 9*((ln3)^2 + 2ln(3) * ln(x^2-2) + (ln(x^2-2))^2) [/mm]

[mm]= 9*((ln3)^2 + 2ln(3) * ln[(x-\sqrt{2})(x+\sqrt{2})] + (ln[(x-\sqrt{2})(x+\sqrt{2})])^2) [/mm]

[mm]=9*((ln3)^2 + 2ln(3) * (ln(x-\sqrt{2}) + ln(x+\sqrt{2})) + (ln(x-\sqrt{2}) + ln(x+\sqrt{2}))^2) [/mm]

und so gehts weiter mit vereinfachen :-)

Schaffst du das nun alleine? :-)

Bezug
                
Bezug
Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 14.12.2006
Autor: McMuskel

Ui, das ist ja ein ganz schöner Klammerwald :-)
OK, die Vereinfachung konnt ich nachvollziehen.
Und wie darf ich das nun ableiten? Mit der Produkt- und Kettenregel?

Bezug
                        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Do 14.12.2006
Autor: Gonozal_IX

ln(3) ist eine Konstante! Daran denken :-)
Aber sonst einfach Ableiten :-)

Bezug
                                
Bezug
Differenzieren einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Do 14.12.2006
Autor: McMuskel

Ah, gut, dass du das erwähnst. Das erspart mir eine weitere Frage :-) Danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]