matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit im Nullp.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit im Nullp.
Differenzierbarkeit im Nullp. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit im Nullp.: Lösungshilfe
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 06.05.2014
Autor: FelixG.

Aufgabe
Sei g: R->R beliebig und [mm] f:R^2->R [/mm] defi niert durch f(x; y) = yg(x). Beweisen Sie, dass
f genau dann im Nullpunkt vollstandig di fferenzierbar ist, wenn g in x = 0 stetig ist.

Brauche Hilfe bei der Lösung der Aufgabe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Di 06.05.2014
Autor: fred97

Programm:

1. Zeige , dass f in (0,0) partiell differenzierbar ist und berechne gradf(0,0).

2. Es gilt, wegen (1): f ist in (0,0) vollständig differenzierbar  [mm] \gdw [/mm]

   $Q(s,t):= [mm] \bruch{f(s,t)-f(0,0)-gradf(0,0)*(s,t)}{||(s,t)||} \to [/mm] 0$ für (s,t) [mm] \to [/mm] (0,0)

3. Zeige also:

   Q(s,t) [mm] \to [/mm] 0 für (s,t) [mm] \to [/mm] (0,0)   [mm] \gdw [/mm] g ist in x=0 stetig.

FRED

Bezug
                
Bezug
Differenzierbarkeit im Nullp.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Di 06.05.2014
Autor: FelixG.

Ich habe jetzt bei 1) für partielle Differentiation 0 raus und für gradf auch 0.
Bei 2.) steht somit für (s,t)->(0,0) das Q(s,t) auch gegen 0 geht.
Ist das so richtig? Hoffe du verstehst was ich meine!!! :)

Bezug
                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:08 Mi 07.05.2014
Autor: fred97


> Ich habe jetzt bei 1) für partielle Differentiation 0 raus


Hä ? Wa meinst Du damit ?


> und für gradf auch 0.

Das ist falsch !  Zeige: [mm] f_x(0,0)=0 [/mm] und [mm] f_y(0,0)=g(0). [/mm] Also ist

   gradf(0,0)=(0,g(0))


>  Bei 2.) steht somit für (s,t)->(0,0) das Q(s,t) auch
> gegen 0 geht.

Unsinn !


>  Ist das so richtig?

Nein.

> Hoffe du verstehst was ich meine!!! :)

Ich verstehe nicht was Du meinst.

FRED


Bezug
                                
Bezug
Differenzierbarkeit im Nullp.: Problem
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 07.05.2014
Autor: Illihide

Ich habe genau das selbe Problem.
Ich bin bisher soweit : gradf(0,0)= (0,g(0)) (wie du es bereits sagtest)
und hab das ganze in die Formel eingestzt:

Q(s,t) = [mm] \bruch{tg(s)+(0,tg(o))}{ \parallel (s,t) \parallel } [/mm]
Ist das soweit richtig oder ist das auch falsch? Wenn es richtig ist wie komme ich nun weiter weil es strebt ja alles gegen 0 ?1

LG Illi

Bezug
                                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 07.05.2014
Autor: fred97


> Ich habe genau das selbe Problem.
>  Ich bin bisher soweit : gradf(0,0)= (0,g(0)) (wie du es
> bereits sagtest)
>  und hab das ganze in die Formel eingestzt:
>  
> Q(s,t) = [mm]\bruch{tg(s)+(0,tg(o))}{ \parallel (s,t) \parallel }[/mm]
>  
> Ist das soweit richtig oder ist das auch falsch?

falsch . $gradf(0,0)*(s,t)$  ist ein Skalarprodukt !!!

FRED

> Wenn es
> richtig ist wie komme ich nun weiter weil es strebt ja
> alles gegen 0 ?1
>  
> LG Illi


Bezug
                                                
Bezug
Differenzierbarkeit im Nullp.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 07.05.2014
Autor: Illihide

Selbst wenn ich gradf(0,0)* (s,t) so stehen lasse, dann ergibt sich für mich noch das selbe problem....
Ich weis nicht wie ich dort etwas vereinfachen kann oder etwas herauslesen könnte...

Bezug
                                                        
Bezug
Differenzierbarkeit im Nullp.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 07.05.2014
Autor: fred97


> Selbst wenn ich gradf(0,0)* (s,t) so stehen lasse, dann
> ergibt sich für mich noch das selbe problem....
>  Ich weis nicht wie ich dort etwas vereinfachen kann oder
> etwas herauslesen könnte...

Rechne nach:

  [mm] $Q(s,t)=\bruch{t}{\wurzel{s^2+t^2}}*(g(s)-g(0))$ [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]