matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit "arctan"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differenzierbarkeit "arctan"
Differenzierbarkeit "arctan" < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit "arctan": Tipp
Status: (Frage) beantwortet Status 
Datum: 18:22 So 06.01.2008
Autor: Erdbeerrose

Aufgabe
Beweisen Sie, dass arctan auf ganz [mm] \IR [/mm] differenzierbar ist.

Hallo!
Ich brauche mal wieder eure Hilfe... Mir fehlt bei dieser Aufgabe ein bisschen die Grundidee. Nein, eigentlich nicht, aber ich komme einfach nicht weiter.
Ich weiß, dass ich beim Beweis für die Differenzierbarkeit nachweisen muss, dass der Grenzwert des Differenzenquotienten existiert.
Wenn ich diesen allerdings bilde, dann komme ich insgesamt auf [mm] limes_{y\rightarrow\y_{0}} [/mm] = [mm] \bruch{(y-y_{0})(cos(y)*(cos(y_{0})}{cos(y_{0})sin(y)-cos(y)sin(y_{0})}. [/mm]
Und der geht für y geht gegen [mm] y_{0} [/mm] (das kann ich irgendwie nicht richtig eingeben) insgesamt gegen 0, aber stimmt das?
Das liefert mir ja noch lange nicht die gesuchte Ableitung, denn die sieht ja doch etwas anders aus oder stehe ich auf dem Schlauch?

Oder würde für den Beweis der Differenzierbarkeit auch reichen, dass man die Ableitung herleitet und damit verdeutlicht, dass es keine Schwierigkeiten gibt?

Ich danke euch schon jetzt für eure Hilfe!
LG Erdbeerrose

Ich habe diese Frage in keinem anderen Internetforum gestellt.

        
Bezug
Differenzierbarkeit "arctan": Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 So 06.01.2008
Autor: koepper

Hallo Erdbeerrose,

hier der Tipp: Es gibt einen Satz über die Differenzierbarkeit von Umkehrfunktionen. Der liefert dann auch gleich die Ableitung. Verwende den und die Differenzierbarkeit von tan auf dem offenen Intervall von -PI/2 bis PI/2.
Gruß
Will

Bezug
                
Bezug
Differenzierbarkeit "arctan": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 So 06.01.2008
Autor: Erdbeerrose

Hi Will!
Hey, vielen Dank! Das wusste ich noch nicht, aber das hilft natürlich sehr! Ich danke dir und schönen Abend,
LG Erdbeerrose

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]