matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Differenzierbarkeit
Differenzierbarkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 20.03.2006
Autor: Nadja1989

Aufgabe
Ist  [mm] \wurzel{|x|} [/mm] an der Stelle x=0 differenzierbar?

Diese Frage kam heut in unserer Mathearbeit vor. Man sollte das Schaubild  zeichnen und daran ablesen ob es differenzisrbar ist. Ich habe geschrieben dass es nicht differenzierbar ist, wegen dem Knick.
ABer ich bin mir nicht sicher, weil eigentlich wird die Steigung ja von beiden Seiten her immer steiler und ist dann in diesem Punkt unendlich bzw. nicht definiert.
Kann ich dann schreiben es ist nicht differenzierbar, weil die Steigung auf der einen Seite positiv und auf der anderen negativ ist und kann ich auch schreiben dass dei Steigung in diesem Punkt ne parallele zur y-Achse wäre und das nicht geht????
Ich steh gerade echt aufm Schlauch!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Differenzierbarkeit: mehrere Erklärungen möglich
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 20.03.2006
Autor: Loddar

Hallo Nadja!


[Dateianhang nicht öffentlich]


> Ich habe geschrieben dass es nicht differenzierbar ist, wegen dem Knick.

Das ist eine (für den Schulgebrauch ausreichende?) anschauliche und richtige Erklärung und stimmt so!


> ABer ich bin mir nicht sicher, weil eigentlich wird die
> Steigung ja von beiden Seiten her immer steiler und ist
> dann in diesem Punkt unendlich bzw. nicht definiert.

Auch so kann man argumentieren ...


> Kann ich dann schreiben es ist nicht differenzierbar, weil
> die Steigung auf der einen Seite positiv und auf der
> anderen negativ ist und kann ich auch schreiben dass dei
> Steigung in diesem Punkt ne parallele zur y-Achse wäre und
> das nicht geht????

Und auch das ist als Begründung richtig!


Ganz formell hätte man das über die Grenzwertbetrachtung bzw. Existenz des Differenzenquotienten [mm] $\limes_{x\rightarrow x_0}\bruch{f(x_0)-f(x)}{x_0-x}$ [/mm] bzw. [mm] $\limes_{h\rightarrow 0}\bruch{f(x+h)-f(x)}{h}$ [/mm] nachweisen können / müssen.

Aber da weiß ich nicht, ob ihr Differenzierbarkeit auf diese Methode eingeführt habt.


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]