matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Differenzierbarkeit
Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 14.12.2005
Autor: Lavanya

Aufgabe
Entscheiden Sie direkt mit der Definition der Differenzierbarkeit für jede der folgenden Funktionen ob sie an der Stelle  [mm] \delta=1 [/mm] differenzierbar ist :

a) f(x)=  [mm] x^{3} [/mm]
b) [mm] f(x)=|x-1|^{3} [/mm]
c) f(x)= [mm] \wurzel{x-1} [/mm]

Hallo,

ich bins noch mal..... Diese Funktionen kann ich Ableiten , aber mit der Definition der Differenzierbarkeit, kriege ich das nicht wirklich hin ....

vielleicht könnt ihr mir helfen...

ich hoffe :) ...............

Definition : y= [mm] \bruch{f( x_{0})-f( \delta)}{x_{0}- \delta} [/mm]

das ist die Definition die wir uns in der Vorlesung aufgeschrieben haben....

vielen Dank im vorraus...

gruß lavanya

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 14.12.2005
Autor: mathmetzsch

Hallo,

also zunächst mal sieht deine Definition der Diffbarkeit ziemlich merkwürdig. Da sollte ein Grenzwert stehen, in etwas so:

[mm] \limes_{x\rightarrow x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}} [/mm]

Für deine erste Funktion ergibt sich dann z.B.:

[mm] \limes_{x\rightarrow 1}\bruch{x^{3}-1}{x-1}=\limes_{x\rightarrow 1} x^{2}+2x+1=3 [/mm]

Das kriegt man z.B. durch Polynomdivision heraus! Also ist die Funktion an der Stelle diffbar. Bei dem Betrag wäre ich da schon misstrauischer. Der Beweis geht aber analog.

Für die letzte Funktion ergibt sich:
[mm] \limes_{x\rightarrow 1}\bruch{\wurzel{x-1}}{x-1}=\limes_{x\rightarrow 1}\bruch{1}{\wurzel{x-1}} [/mm]
Dieser Grenzwert ist unbestimmt, da der Bruch für x gegen 1 gegen unendlich läuft. Das ist also sicher nicht diffbar.

Viele Grüße
Daniel


Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Do 15.12.2005
Autor: Lavanya

Hallo mathmetzsch ,

Ich wollte mich nur kurz schon mal für deinen Beitrag bedanken.... jetzt versuche ich da ma durch zu kommen..... Die Definition haben wir uns so in der Vorlesung aufgeschrieben naja wie auch immer....

Aber noch eine Frage.....

[mm]\limes_{x\rightarrow x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}}[/mm]

Hier mache ich Polynomdivision... und es kommt 3 raus..... aber was ist mit den [mm] x^{2} [/mm] die müssen doch auch noch vorkommen oder nicht ?

Gruß Dilani


Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Do 15.12.2005
Autor: mathmetzsch

Also Differenzierbarkeit hat etwas mit Grenzprozessen zu tun. Lies es nach, wenn du es nicht richtig verstanden hast.

Der Grenzwert lautete:

[mm] \limes_{x\rightarrow 1}\bruch{x^{3}-1}{x-1} [/mm]
[mm] =\limes_{x\rightarrow 1}x^{2}+x+1 [/mm]
=3

Da kann doch gar nichts mit [mm] x^{2} [/mm] herauskommen, weil x gegen 1 läuft. Betrachtest du das allgemein, dann wirst du für [mm] x\to x_{0} [/mm] natürlich als Ableitung [mm] 3x_{0}^{2} [/mm] rausbekommen. I.A. ist das aber schwieriger auszurechnen, als an einer best. Stelle!

Sind alle Unklarheiten beseitigt?
Viele Grüße
Daniel

Bezug
                                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Fr 16.12.2005
Autor: Lavanya

Hi, ...

so jetzt habe ich das verstanden..... Dankeschön....

Vielleicht kannst du mir jetzt noch sagen.... ob es richtig sein kann das bei  aufgabe b)  [mm] \limes_{x\rightarrow\1} x_{0}^{2}-2x_{0}+1 [/mm] = 0 rauskommt.....

Ja und bei c) [mm] \limes_{x\rightarrow\1} \bruch{1}{x_{0}-1} [/mm]

ist ja an der Stelle 1 nicht deffiniert... da man ´nicht durch Null teilen kann.....

ist das so richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]