matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisDifferenzierbareit R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Differenzierbareit R^n
Differenzierbareit R^n < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbareit R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Sa 15.06.2013
Autor: JanaJauntily

Aufgabe
Sei [mm] f:U\to\IR [/mm] mit
f(a,b)= die kleinste reelle Nullstelle von [mm] x^{2}+ax+b [/mm]
gegeben. Bestimmen Sie dafür

a) einen möglichst großen offenen Definitionbereich [mm] U\subseteq\IR^{2}, [/mm]
b) [mm] J_{f(a,b)}, [/mm]
c) alle Richtungsableitungen.

Hallo.

Also allgemein würde ich sagen habe ich keine Probleme damit, eine Jacobimatrix oder Richtungsableitungen zu bestimmen, jedoch habe ich bei der Funktion das Problem, dass ich nicht genau weiß wie sie aussehen soll.

Ich weiß leider nicht was eine reelle Nullstelle ist, bzw. die kleinste reelle Nullstelle, da es weder in meiner Vorlesung noch im Skript definiert ist. Eigentlich kann es ja nicht viel anders sein als in den eindimensionalen Zahlen. Kann mir jemand in seinen eigenen Worten erklären, wie das gemeint ist und wie ich die Definition dan umschreibe?

Außerdem habe ich ein Problem mit dem Aufgabenteil a), da ich nicht weiß wie das genau mit dem Definitionsbereich gemeint ist, fall sich das aus der oberen Frage nicht ergibt, wäre ich da über eine Aufklärung auch sehr dankbar.

Liebe Grüße, Jana!


        
Bezug
Differenzierbareit R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 So 16.06.2013
Autor: fred97


> Sei [mm]f:U\to\IR[/mm] mit
> f(a,b)= die kleinste reelle Nullstelle von [mm]x^{2}+ax+b[/mm]
>  gegeben. Bestimmen Sie dafür
>  
> a) einen möglichst großen offenen Definitionbereich
> [mm]U\subseteq\IR^{2},[/mm]
>  b) [mm]J_{f(a,b)},[/mm]
>  c) alle Richtungsableitungen.
>  Hallo.
>  
> Also allgemein würde ich sagen habe ich keine Probleme
> damit, eine Jacobimatrix oder Richtungsableitungen zu
> bestimmen, jedoch habe ich bei der Funktion das Problem,
> dass ich nicht genau weiß wie sie aussehen soll.
>  
> Ich weiß leider nicht was eine reelle Nullstelle ist, bzw.
> die kleinste reelle Nullstelle, da es weder in meiner
> Vorlesung noch im Skript definiert ist. Eigentlich kann es
> ja nicht viel anders sein als in den eindimensionalen
> Zahlen. Kann mir jemand in seinen eigenen Worten erklären,
> wie das gemeint ist und wie ich die Definition dan
> umschreibe?
>  
> Außerdem habe ich ein Problem mit dem Aufgabenteil a), da
> ich nicht weiß wie das genau mit dem Definitionsbereich
> gemeint ist, fall sich das aus der oberen Frage nicht
> ergibt, wäre ich da über eine Aufklärung auch sehr
> dankbar.
>  
> Liebe Grüße, Jana!
>  


Schau mal hier:

https://matheraum.de/read?t=971919

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]