matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzialgleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Differenzialgleichung
Differenzialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung: Idee
Status: (Frage) überfällig Status 
Datum: 14:33 So 09.05.2010
Autor: peeetaaa

Aufgabe
In den Abbildungen sind die Spuren der Lösungen zu den Anfangswerten
[mm] \vektor{1 \\ 0}, \vektor{0 \\ 1}, \vektor{-1 \\ 0} [/mm] und [mm] \vektor{0 \\ -1} [/mm] (für [mm] t_0=0) [/mm] dargestellt. Welche Abbildung gehört zu welchem System? Geben Sie jeweils an, in welchen Richtungen die Spuren durchlaufen werdnen.

Hallo zusammen,

hab irgendwie ein paar Schwierigkeiten mit dieser Aufgabe denn ich weiß nicht wirklich wie ich da rangehen soll!
Soll das zum Beispiel für dieses System machen:
[mm] \vektor{x'(t) \\ y'(t)}= \vektor{x(t)-y(t) \\ x(t)+y(t)} [/mm]

Mir ist schon klar, dass die Abbildungen der Spuren nicht mitabgebilet sind.
Nur wie kann ich denn generell von dem System auf eine Spur schließen?
Muss ich einfach 2 Anfangswerte einsetzen und gucken was dabei rauskommt?
Naja vllt kann mir jmd die Rangehensweise erklären.
Danke!

Gruß,
peeetaaa

        
Bezug
Differenzialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 11.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Di 11.05.2010
Autor: Niladhoc

Hallo,

ich denke es wird reichen, erste und zweite Ableitung für jeden Punkt auszurechnen und dann anhand der Tangente am Anfangspunkt sowie der Richtung, "in die sich die Kurve krümmt" zu entscheiden, welche Abbildungen zu ihnen gehören.

lg

Bezug
                        
Bezug
Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mi 12.05.2010
Autor: peeetaaa

Danke für den Tipp! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]