Differenzenquotient in p-Norm < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 14:27 So 10.06.2012 | Autor: | adefg |
Aufgabe | Es sei [mm] \Omega \subset\mathbb R^n [/mm] ein Gebiet und [mm] u\in W_0^{1,p}(\Omega) [/mm] so, dass [mm] \mathrm{supp}\ [/mm] u [mm] \Subset \Omega (k\in\{1,...,n\}, 1\leq [/mm] p [mm] <\infty [/mm] ).
Sei [mm] d=\mathrm{dist}(U,\partial \Omega) [/mm] >0 und [mm] h\in {\mathbb R} [/mm] mit 0<|h|<d.
Zeigen Sie: [mm] ||D_k^h u||_p \leq ||D_k u||_p [/mm] wobei [mm] D_k^h [/mm] u = [mm] \frac{u(x+he_k)-u(x)}{h} [/mm] der Differenzenquotient in [mm] e_k [/mm] -Richtung ist. |
Ich hänge etwas bei obiger Aufgabe. Als Tipp war gegeben, dass man die Aussage zunächst für [mm] u\in C_0^\infty (\Omega) [/mm] zeigen soll.
Wenn also [mm] u\in C_0^\infty (\Omega) [/mm] dann ist [mm] u\in L^2(\Omega), [/mm] da [mm] C_0^\infty \subset L^2. [/mm] Insbesondere ist auch [mm] D_k^h u\in L^2(\Omega).
[/mm]
Nun fehlt mir aber ein Argument wieso [mm] \lim_{h\rightarrow 0} ||D_k^hu||_p \leq ||D_ku||_p [/mm] ist.
Ich habe erst überlegt, ob man vielleicht mit dem Satz über monotone Konvergenz argumentieren könnte, aber irgendwie bin ich mir über die Monotonie des Differenzenquotienten nicht sicher.
Kann mir da jemand eine Hilfe geben?
Ähnlich kann man ja auch für u im Sobolev-Raum [mm] u\in W^{1,p} [/mm] argumentieren, wir wissen dass [mm] D_k^hu \in L^p(\Omega) [/mm] und müssten dann argumentieren, dass dann auch der Grenzwert des Quotienten in [mm] L^p [/mm] ist. Ich nehme an, dass das Argument ähnlich dem für [mm] C_0^\infty [/mm] sein wird.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Di 12.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|