matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Ganzrationale Funktionen
Status: (Frage) beantwortet Status 
Datum: 23:52 Mi 29.05.2013
Autor: inmortal

Aufgabe
Eine Funktion dritter Ordnung ist punktsymmetrisch zum Ursprung (0,0), hat im Wendepunkt die Steigung -3 und im Maximum einen Funktionswert
ymax=f(xmax)=2.
Bestimme Sie die Gleichung der Funktion

Hallo, ich bin am verzweifeln und komme bei dieser Aufgabe gar nicht weiter!
Ich hoffe ihr könnt mir Lösungsvorschläge bzw. die Lösug berechnen!

Meine Lösungsversuche:
Habe die Steigung -3 zur Stammfunktion einer Funktion 3. Ordnung gebracht,
da ich davon ausgehe, dass die Steigung des Wendepunktes die 1. Ableitung der 2. Ableitung ist. und habe als Ergebnis -0,5x³ für die Funktion bekomme.
Was ist mit dem ymax=2 gemeint?

Danke für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Do 30.05.2013
Autor: M.Rex

Hallo und [willkommenmr]

> Eine Funktion dritter Ordnung ist punktsymmetrisch zum
> Ursprung (0,0), hat im Wendepunkt die Steigung -3 und im
> Maximum einen Funktionswert
> ymax=f(xmax)=2.
> Bestimme Sie die Gleichung der Funktion
> Hallo, ich bin am verzweifeln und komme bei dieser Aufgabe
> gar nicht weiter!
> Ich hoffe ihr könnt mir Lösungsvorschläge bzw. die
> Lösug berechnen!

Gehen wir die MBSteckbriefaufgabe mal systematisch an.

Gesucht ist eine Funktion dritten Grades, also hast du
[mm] f(x)=ax^{3}+bx^{2}+cx+d [/mm]

Da diese ursprungssymmetrisch sein soll, muss gelten b=d=0, da die Ursprungssymmetrie die geraden Exponenten ausschließt.

Also hast du nur noch:
[mm] f(x)=ax^{3}+cx [/mm]

Da von Extrem- und Wendestellen die Rede ist, leiten wir nun dreimal ab (Eine mögliche Notwendige Bed. f. Wendepunkt ist ja [mm]f'''(x_{w})\ne0[/mm])

Das ergibt:
[mm]f'(x)=3ax^{2}+c[/mm]
[mm]f''(x)=6ax[/mm]
[mm]f'''(x)=6[/mm]

Der Wendepunkt muss hier im Ursprung liegen, da dieses die einzige Stelle ist, an der gilt [mm] f''(x_{w})=0 [/mm]
Die notwendige Bedingung ist ebenfalls erfüllt.

Dort hat die Funktion die Steigung -3, also muss gelten:
[mm]f'(0)=-3[/mm]
Das führt zu [mm] 3a\cdot0+c=-3\Leftrightarrow-3=c [/mm] .

Damit hast du
[mm] f(x)=ax^{3}-3 [/mm]

Bleibt noch, a zu bestimmen, dazu brauchst du noch den Hochpunkt, dazu muss gelten:
f'(x)=0, das führt hier zu:
[mm]3ax^{2}-3=0\Leftrightarrow x=\pm\sqrt{\frac{1}{a}}[/mm]

Da du nur für positive a die Wurzel ziehen kannst, muss a dann auch positiv sein. Außerdem bekommst du nur dann einen Wendepunkt mit fallender Steigung.

Damit hat der Hochpunkt die x-Koordinate [mm] x=-\sqrt{\frac{1}{a}}, [/mm] denn
[mm] f''\left(-\sqrt{\frac{1}{a}}\right)=6a\cdot\left(-\sqrt{\frac{1}{a}}\right)<0 [/mm]
aber
[mm] f''\left(\sqrt{\frac{1}{a}}\right)=6a\cdot\left(-\sqrt{\frac{1}{a}}\right)>0 [/mm]

Also muss gelten, da die y-Koordinate dieses Hochpunktes 2 sein soll:

[mm] f\left(-\sqrt{\frac{1}{a}}\right)=2 [/mm]

Mit der konkreten Funktion:

[mm] \left(-\sqrt{\frac{1}{a}}\right)^{3}-3\cdot\left(-\sqrt{\frac{1}{a}}\right)=2 [/mm]

Berechne daraus nun den fehlenden Parameter a.

Bedenke:

[mm] \left(\sqrt{r}\right)^{3}=\left(\sqrt{r}\right)^{2}\cdot\left(\sqrt{r}\right)=r\cdot\sqrt{r} [/mm]


>

> Meine Lösungsversuche:
> Habe die Steigung -3 zur Stammfunktion einer Funktion 3.
> Ordnung gebracht,

Was hat denn die Stammfunktion hier zu suchen?

> da ich davon ausgehe, dass die Steigung des Wendepunktes
> die 1. Ableitung der 2. Ableitung ist. und habe als
> Ergebnis -0,5x³ für die Funktion bekomme.
> Was ist mit dem ymax=2 gemeint?

[mm] y_{max}=2 [/mm] bedeutet, dass die y-Koordinate eines zu suchenden Hochpunktes 2 sein soll.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]