matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung lösen
Differentialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung lösen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:24 So 08.01.2006
Autor: stam

Aufgabe
Finden Sie die Lösung folgender seperabler DGL 1.Ordnung:
[mm]y'=\bruch{x+y-2}{3x-y-2}[/mm]
Tipp: Bringen sie die DGL auf die Form:
[mm]y'=g(\bruch{y}{x})[/mm]

Hallo,
Ich denke, dass dies eine DGL der Form:
[mm]y'=g(\bruch{a*x+b*y+c}{d*x+e*y+f})[/mm]
ist. Diese Gleichung kann man meines Wissens doch mit Hilfe eines Gleichungssystems lösen.
Mein Gleichungssystem:
[mm]1*x_0+1*y_0-2=0[/mm]
[mm]3*x_0-1*y_0-2=0[/mm]
bringt [mm]x_0=1[/mm]
und    [mm]y_0=1[/mm]
als Lösungen.
Jetzt kann ich sagen, das gilt:
[mm]\overline{x}=x-1[/mm]  und
[mm]\overline{y}=y-1[/mm]

So, jetzt müsste man doch eine Formel für [mm]\overline{y}'[/mm] aufstellen können, aber wie rechnet man weiter? Oder ist der Ansatz falsch?

MFG Stam
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialgleichung lösen: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:00 So 08.01.2006
Autor: MathePower

Hallo stam,

[willkommenmr]

> Finden Sie die Lösung folgender seperabler DGL 1.Ordnung:
>  [mm]y'=\bruch{x+y-2}{3x-y-2}[/mm]
>  Tipp: Bringen sie die DGL auf die Form:
> [mm]y'=g(\bruch{y}{x})[/mm]
>  Hallo,
>  Ich denke, dass dies eine DGL der Form:
>  [mm]y'=g(\bruch{a*x+b*y+c}{d*x+e*y+f})[/mm]
>  ist. Diese Gleichung kann man meines Wissens doch mit
> Hilfe eines Gleichungssystems lösen.
>  Mein Gleichungssystem:
>  [mm]1*x_0+1*y_0-2=0[/mm]
>  [mm]3*x_0-1*y_0-2=0[/mm]
>  bringt [mm]x_0=1[/mm]
>  und    [mm]y_0=1[/mm]
> als Lösungen.
>  Jetzt kann ich sagen, das gilt:
>  [mm]\overline{x}=x-1[/mm]  und
>  [mm]\overline{y}=y-1[/mm]
>  
> So, jetzt müsste man doch eine Formel für [mm]\overline{y}'[/mm]
> aufstellen können, aber wie rechnet man weiter? Oder ist
> der Ansatz falsch?

der Ansatz ist ganz richtig. [ok]

Forme die beiden Gleichungen nach [mm]\overline{y}[/mm] bzw. [mm]\overline{x}[/mm] ein, und setze das in die DGL ein.

Dann erhältst Du eine DGL der Form

[mm]\bruch{d\overline{y}}{d\overline{x}}\;=g(\overline{x},\;\overline{y})[/mm]

Gruß
MathePower

Bezug
                
Bezug
Differentialgleichung lösen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:49 So 08.01.2006
Autor: stam

Hallo,
Vielen Dank erstmal für die Anwort,
allerdings ist mir leider etwas trotzdem nicht ganz klar geworden.

> Forme die beiden Gleichungen nach [mm]\overline{y}[/mm] bzw.
> [mm]\overline{x}[/mm] ein, und setze das in die DGL ein.

Was soll ich jetzt genau wie umformen? Bzw. was bedeutet "einformen"?

LG
Stam





Bezug
                        
Bezug
Differentialgleichung lösen: einsetzen
Status: (Antwort) fertig Status 
Datum: 13:53 Mo 09.01.2006
Autor: mathemaduenn

Hallo Stam,
Du sollst einfach in die Ausgangs DGL einsetzen
[mm] x=\overline{x}+1 [/mm]
[mm] y=\overline{y}+1 [/mm]
[mm] \overline{y}(\overline{x})^{'}=(y(x-1)-1)'=y(x-1)' [/mm]
Also ist die neue DGL
[mm] \overline{y}(\overline{x})^{}'=y(\overline{x})^{'}=\bruch{\overline{x}+1+\overline{y}+1-2}{3*(\overline{x}+1)-(\overline{y}+1)-2} [/mm]
Das ist dann ein DGL [mm] \overline{y}^{'}=g(\bruch{\overline{y}}{\overline{x}}) [/mm]
Die dann durch weitere Substitution [mm] u=\bruch{\overline{y}}{\overline{x}} [/mm] zu lösen wäre.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]