matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung lösen
Differentialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Fr 01.08.2014
Autor: Sim22

Aufgabe
Lösen der Differentialgleichung:
x''+2x'=3

Hallo Mathe-Forum,
Ich habe die Aufgabe bearbeitet, aber komme nicht auf das selbe Ergebnis wie in der Musterlösung.

[mm] \lambda^2+2*\lambda=3 [/mm]
Homogener Teil: [mm] \lambda^2+2*\lambda=0 [/mm]
[mm] \gdw \lambda1=0 [/mm] und [mm] \lambda2= [/mm] -2
[mm] \gamma_{h}=c1+c2*exp(-2t) [/mm]

Inhomogener Teil:
[mm] G(t)=\pmat{ 1 & exp(-2t) \\ 0 & -2exp(-2t) } [/mm]
[mm] G^-1(t)=\bruch{-1}{2*exp(-2t)}*\pmat{ -2exp(-2t) & -exp(-2t) \\ 0 & 1 } =\pmat{ 1 & 1/2 \\ 0 & -1/2exp(2t) } [/mm]

[mm] \integral_{t0}^{t}{\pmat{ 1 & 1/2 \\ 0 & -1/2exp(2t) }*\vektor{0 \\ 3}dt}= \integral_{t0}^{t}{\vektor{3/2 \\ -3/2exp(2t)}dt} [/mm] = [mm] \vektor{3/2t \\ -3/4exp(2t)-3/4} [/mm]

[mm] \gamma_{s}=(1, exp(-2t))*\vektor{3/2t \\ -3/4exp(2t)-3/4}=3/2t-3/4+3/4exp(-2t) [/mm]

In der Musterlösung kommt jedoch [mm] \gamma_{s}=3/2t [/mm] raus.
Erkennt jemand einen Fehler in der Rechnung?
Ich würde mich über Eure Hilfe sehr freuen.
Mit freundlichen Grüßen!

        
Bezug
Differentialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Fr 01.08.2014
Autor: rmix22


> [mm]\gamma_{s}=(1, exp(-2t))*\vektor{3/2t \\ -3/4exp(2t)-3/4}=3/2t-3/4+3/4exp(-2t)[/mm]
>  
> In der Musterlösung kommt jedoch [mm]\gamma_{s}=3/2t[/mm] raus.
>  Erkennt jemand einen Fehler in der Rechnung?

Ohne sie nachgerechnet zu haben würde ich sagen, deine Rechnung ist richtig (wenngleich unbestimmter Ansatz hier viel einfacher gewesen wäre) und die Musterlösung stimmt ebenfalls.
Schauen wir und doch die Gesamtlösung an, die sich durch deine Rechnung ergibt:

     [mm] $x(t)=\underbrace{\green{C_1}+\blue{C_2*e^{-2t}}}_{=x_h(t)} [/mm] + [mm] \underbrace{\frac{3}{2}*t\green{-\frac{3}{4}}+\blue{\frac{3}{4}*e^{-2t}}}_{=x_s(t)}$ [/mm]

und wenn wir "Gleichfarbiges" zusammenfassen, ausklammern und umbenennen erhalten wir

     [mm] $x(t)=\green{C_1-\frac{3}{4}}+\blue{\left({C_2+\frac{3}{4}}\right)}*e^{-2t}+\frac{3}{2}*t=\green{D_1}+\blue{D_2}*e^{-2t}+\frac{3}{2}*t$ [/mm]

und das dürfte sich mit deiner Musterlösung decken.

Gruß RMix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]