matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: "Frage"
Status: (Frage) beantwortet Status 
Datum: 18:16 Do 19.06.2008
Autor: Dagobert

hallo!

hätte ne frage zu folgendem beispiel:
[Dateianhang nicht öffentlich]

und zwar hab ich da mal so angefangen:

die linke seite hab ich mal zu [mm] \lambda^2+6*\lambda+9=0 [/mm] umgeshrieben
--> [mm] \lambda_{1,2}=-3 [/mm]

--> [mm] y_H=C_1*e^{-3*x}+C_2*x*e^{-3*x} [/mm] oder?

nur bei dem term [mm] (36*x+12)*e^{3*x} [/mm] weiß ich nicht so richtig was ich da machen soll, bzw welchen ansatz ich da für [mm] y_P [/mm] verwenden muss. vielleicht könnte mir da jemand weiterhelfen.

danke

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Do 19.06.2008
Autor: Martinius

Hallo Dagobert,

> hallo!
>  
> hätte ne frage zu folgendem beispiel:
> [Dateianhang nicht öffentlich]
>  
> und zwar hab ich da mal so angefangen:
>  
> die linke seite hab ich mal zu [mm]\lambda^2+6*\lambda+9=0[/mm]
> umgeshrieben
> --> [mm]\lambda_{1,2}=-3[/mm]
>  
> --> [mm]y_H=C_1*e^{-3*x}+C_2*x*e^{-3*x}[/mm] oder?


Ja, richtig


  

> nur bei dem term [mm](36*x+12)*e^{3*x}[/mm] weiß ich nicht so
> richtig was ich da machen soll, bzw welchen ansatz ich da
> für [mm]y_P[/mm] verwenden muss. vielleicht könnte mir da jemand
> weiterhelfen.
>  
> danke


Für die partikuläre Lösung nimmst Du den Ansatz:

[mm]y_p=(A*x+B)*e^{3*x}[/mm]

, da 3 keine Lösung der charakeristischen Gleichung ist.


LG, Martinius

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 19.06.2008
Autor: Dagobert

hallo!

also ich hab das dann mal so gemacht:

[mm] y_P=(A*x+B)*e^{3*x} [/mm] ..das habe ich 2 mal abgeleitet:

[mm] y_{P´}=A*e^{3*x}+3*(A*x+B)*e^{3*x} [/mm]

[mm] y_{^P´´}=6*A*e^{3*x}+9*(A*x+B)*e^{3*x} [/mm]

das habe ich dann in die angabe eingsetzt und habe erhalten:

[mm] 12*A*e^{3*x}+36*A*x*e^{3*x}+36*B*e^{3*x}=(36*x+12)*e^{3*x} [/mm]

nur wie kann ich da jetzt A und B berechnen?

danke

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Do 19.06.2008
Autor: schachuzipus

Hallo Dagobert,

> hallo!
>  
> also ich hab das dann mal so gemacht:
>  
> [mm]y_P=(A*x+B)*e^{3*x}[/mm] ..das habe ich 2 mal abgeleitet:
>  
> [mm]y_{P´}=A*e^{3*x}+3*(A*x+B)*e^{3*x}[/mm]
>  
> [mm]y_{^P´´}=6*A*e^{3*x}+9*(A*x+B)*e^{3*x}[/mm]
>  
> das habe ich dann in die angabe eingsetzt und habe
> erhalten:
>  
> [mm]12*A*e^{3*x}+36*A*x*e^{3*x}+36*B*e^{3*x}\overset{\red{!}}{=}(36*x+12)*e^{3*x}[/mm] [ok]

das sieht soweit stimmig aus

Klammere auf der linken Seite das [mm] $e^{3x}$ [/mm] aus, dann kannst du vergleichen

[mm] $\gdw (12\cdot{}A+36\cdot{}A\cdot{}x+36\cdot{}B)\cdot{}e^{3x}\overset{\red{!}}{=}(36\cdot{}x+12)\cdot{}e^{3x}$ [/mm]

[mm] $\gdw (\blue{36Ax}+\green{(12A+36B)})\cdot{}e^{3x}\overset{\red{!}}{=}(\blue{36\cdot{}x}+\green{12})\cdot{}e^{3x}$ [/mm]

>  
> nur wie kann ich da jetzt A und B berechnen?
>  
> danke

LG

schachuzipus


Bezug
                                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 19.06.2008
Autor: Dagobert

hallo!

danke, d.h. A wäre dann  1 oder? und B=0 ?

dann wäre die Lösung:

[mm] y(x)=x*e^{3*x}+C_1*e^{-3*x}+C_2*x*e^{-3*x} [/mm]

danke

Bezug
                                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Do 19.06.2008
Autor: schachuzipus

Hallo nochmal,

> hallo!
>  
> danke, d.h. A wäre dann  1 oder? und B=0 ? [ok]

Ja

>  
> dann wäre die Lösung:
>
> [mm]y(x)=x*e^{3*x}+C_1*e^{-3*x}+C_2*x*e^{-3*x}[/mm] [daumenhoch]

Kann man sagen ;-)

> danke

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]