matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Auflösung Betragsstriche
Status: (Frage) beantwortet Status 
Datum: 09:45 Do 20.03.2008
Autor: ebarni

Aufgabe
[mm]y_1' = (3x-1)*y_1 + (x-1) *y_2 [/mm]

[mm] y_2 = -y_1 [/mm]

Hallo zusammen, ich habe also zunächst [mm] y_2 = -y_1 [/mm] eingesetzt und erhalte:

[mm]y_1' = (3x-1)*y_1 + (x-1) *y_2 [/mm]

[mm]y_1' = (3x-1)*y_1 + (x-1) *-y_1 [/mm]

[mm]y_1' = (3x-1)*y_1 - (x-1) *y_1 [/mm]

[mm]y_1' = y_1*(3x-1-x+1)[/mm]

[mm]y_1' = y_1*2x[/mm]

Das löse ich durch Trennung der Variablen und erhalte:

[mm] \bruch{1}{y_1} dy = 2x*dx [/mm]

[mm]\integral{\bruch{1}{y_1} dy} = \integral{2x dx}[/mm]

[mm] ln |y_1| = x^{2}+C}[/mm]

[mm] |y_1| = e^{x^{2}} +C [/mm]

Ich weiß durch einsetzen, dass ich die Lösung:

[mm] y_1 = e^{x^{2}} [/mm]

erhalte. Wie aber löse ich formal korrekt die Betragsstriche von [mm] |y_1| [/mm] auf bei:

[mm] |y_1| = e^{x^{2}} +C [/mm]

wenn ich keine Anfangsbedingung gegeben habe?

Viele Grüße, Andreas

        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Do 20.03.2008
Autor: MathePower

Hallo ebarni,

> [mm]y_1' = (3x-1)*y_1 + (x-1) *y_2[/mm]
>  
> [mm]y_2 = -y_1[/mm]
>  Hallo zusammen, ich habe also zunächst [mm]y_2 = -y_1[/mm]
> eingesetzt und erhalte:
>  
> [mm]y_1' = (3x-1)*y_1 + (x-1) *y_2[/mm]
>  
> [mm]y_1' = (3x-1)*y_1 + (x-1) *-y_1[/mm]
>  
> [mm]y_1' = (3x-1)*y_1 - (x-1) *y_1[/mm]
>  
> [mm]y_1' = y_1*(3x-1-x+1)[/mm]
>  
> [mm]y_1' = y_1*2x[/mm]
>  
> Das löse ich durch Trennung der Variablen und erhalte:
>  
> [mm]\bruch{1}{y_1} dy = 2x*dx[/mm]
>  
> [mm]\integral{\bruch{1}{y_1} dy} = \integral{2x dx}[/mm]
>  
> [mm]ln |y_1| = x^{2}+C}[/mm]
>  
> [mm]|y_1| = e^{x^{2}} +C[/mm]
>  
> Ich weiß durch einsetzen, dass ich die Lösung:
>  
> [mm]y_1 = e^{x^{2}}[/mm]
>  
> erhalte. Wie aber löse ich formal korrekt die
> Betragsstriche von [mm]|y_1|[/mm] auf bei:
>  
> [mm]|y_1| = e^{x^{2}} +C[/mm]

Korrekterweise heisst das so:

[mm]|y_1| = C*e^{x^{2}}[/mm]

Für den Fall [mm]y_{1} > 0[/mm] ergibt sich:

[mm]\vmat{y_{1}}=y_{1}=C*e^{x^{2}}[/mm]

Für den Fall  [mm] y_{1} < 0[/mm] ergibt sich:

[mm]\vmat{y_{1}}=-y_{1}=C*e^{x^{2}}\Rightarrow y_{1}=-C*e^{x^{2}[/mm]

Das heisst Du erhältst insgesamt [mm]y_{1}=\pm C*e^{x^{2}}[/mm]

Definieren wir nun [mm]C_{1}:=\pm C[/mm], so erhalten wir

[mm]y_{1}=C_{1}*e^{x^{2}}[/mm]

>  
> wenn ich keine Anfangsbedingung gegeben habe?

Wenn eine Anfangsbedingung vorhanden ist, dann wird hierdurch die Konstante C bestimmt. Sonst ist sie unbestimmt.

>  
> Viele Grüße, Andreas

Gruß
MathePower

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Do 20.03.2008
Autor: ebarni

Hallo MathePower, danke für Deine schnelle Antwort!

> Korrekterweise heisst das so:
>  
> [mm]|y_1| = C*e^{x^{2}}[/mm]

Wie kommst Du darauf? Wegen:

[mm]ln |y_1| = x^2 + C[/mm]

[mm]|y_1| = e^{x^{2}+C}[/mm]

[mm]|y_1| = C_1*e^{x^{2}}[/mm] mit [mm] C_1=e^C [/mm]


> Wenn eine Anfangsbedingung vorhanden ist, dann wird
> hierdurch die Konstante C bestimmt. Sonst ist sie
> unbestimmt.
>  

Heißt das also, das ich C frei wählen kann C [mm] \in \IR [/mm] (außer Null) also z.B. C=1

Viele Grüße, Andreas

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Do 20.03.2008
Autor: MathePower

Hallo ebarni,

> Hallo MathePower, danke für Deine schnelle Antwort!
>  
> > Korrekterweise heisst das so:
>  >  
> > [mm]|y_1| = C*e^{x^{2}}[/mm]
>  
> Wie kommst Du darauf? Wegen:
>  
> [mm]ln |y_1| = x^2 + C[/mm]
>  
> [mm]|y_1| = e^{x^{2}+C}[/mm]
>  
> [mm]|y_1| = C_1*e^{x^{2}}[/mm] mit [mm]C_1=e^C[/mm]
>  

Ja. [ok]

>
> > Wenn eine Anfangsbedingung vorhanden ist, dann wird
> > hierdurch die Konstante C bestimmt. Sonst ist sie
> > unbestimmt.
>  >  
> Heißt das also, das ich C frei wählen kann C [mm]\in \IR[/mm] (außer
> Null) also z.B. C=1

Ist keine Anfangsbedingung vorgegeben, so läßt man die Lösung auch so stehen:

[mm]y_{1}=C*e^{x^{2}}[/mm]

Für C wird dabei kein bestimmter Wert eingesetzt.

>  
> Viele Grüße, Andreas

Gruß
MathePower

Bezug
                                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Do 20.03.2008
Autor: ebarni

Hallo MathePower, vielen Dank für Deine Antwort!

Ich wünsche Dir ein frohes Osterfest und grüße ganz herzlich,

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]