matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Differential
Differential < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differential: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:46 So 27.09.2015
Autor: JennMaus

Aufgabe
Berechnen Sie das Differential für die folgenden Funktionen

a) f(x) = ln x * sin x
c) f(x) = 3 + [mm] 2x^2 [/mm] an der Stelle x = 2 und dx = 0,1
d) f(x) = [mm] \bruch{x^3}{e^x} [/mm] an der Stelle x = 2 und dx = -0,1

Guten Morgen,

heißt "berechen Sie das Differential", dass ich einfach die Ableitungen bilden muss?

Somit bei a) f´(x) = [mm] \bruch{sin(x)}{x}+ [/mm] ln(x) * cos (x)

bei b) f´(x) = 4x

bei c) f´(x) = [mm] \bruch{e^x (3x^2-x^3}{e^{2x}} [/mm]

Die Punkte x=2 werde ich vermutlich noch bei b) und c) in die Ableitung einsetzen müssen, aber was hat das dx = 0,1 bzw. dx= -0,1 zu bedeuten?

Wäre schön, wenn mir jemand weiterhelfen könnte.

Vielen Dank und viele Grüße :)

        
Bezug
Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 So 27.09.2015
Autor: Richie1401

Hallo,

ich werfe mal den Begriff des totalen Differentials in den Raum:

   [mm] \mathrm{d}f=\sum_i\frac{\partial f}{\partial x_i}\mathrm{d}x_i [/mm]


Beispiel: [mm] f(x,y)=xy^2, [/mm] dann ist

   [mm] \mathrm{d}f=y^2\mathrm{d}x+2xy\mathrm{d}y [/mm]



Bezug
                
Bezug
Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 27.09.2015
Autor: JennMaus

Hmmm, irgendwie hilft mir das nicht weiter :(

Ich habe doch gar keine mehrdimensionalen Funktionen f(x,y) sondern nur eindimensionale Funktionen f(x) oder? Müsste ich dann für dx = 0,1 einfach anstatt dx 0,1 einsetzen und quasi bei der b) f`(2) = 4 *2 * 0,1 berechnen?

Oder bin ich ganz auf dem falschen Weg?

Bezug
                        
Bezug
Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 So 27.09.2015
Autor: Richie1401

Hallo,

> Hmmm, irgendwie hilft mir das nicht weiter :(
>  
> Ich habe doch gar keine mehrdimensionalen Funktionen f(x,y)
> sondern nur eindimensionale Funktionen f(x) oder?

Richtig. Die Summe erstreckt sich quasi über i=1 bis 1.

Analog ist dir sicherlich bekannt, dass [mm] f'(x)=\frac{df}{dx} [/mm] und somit (rein algebraisch betrachtet!) gilt: $df=f'(x)dx$

Da ja aber nicht ausgeschlossen ist, dass du auch mal auf mehrdimensionale Funktionen stößt, wollte ich dir gleich einmal den vollständigen Ausdruck geben.

Weißt du, was das auch so in etwa bedeutet?

Du hast angegeben, dass dein Background Medizin/WiWi ist. Ich gehe einfach mal davon aus, dass du aus dem medizinischen Bereich stammst. Daher das folgende Beispiel:
Angenommen du gibst einen Patienten Insulin auf Grund des Zuckerspiegels. Nun wirkt Insulin nach irgendeinem Gesetz Z(x), wobei Z den Zuckerspiegel angibt. Die Variable x sei die Menge Insulin, die verabreicht wird. dZ=Z'(x)dx gibt nun folgendes an: Wie ändert sich der Zuckerspiegel, wenn man "ganz wenig" Insulin verabreicht. Dies ist also ein Maß für die Änderung eines Wertes.

Beispiel für mehrdimensional: Selbe Beispiel wie oben, allerdings sind Variablen nun: x als die Menge, die verabreicht wird, dann noch v für die Geschwindigkeit und sagen wir y für den Ort, wo das Insulin verabreicht wird. Dann ist die Funktion Z(x,v,y).

> Müsste
> ich dann für dx = 0,1 einfach anstatt dx 0,1 einsetzen und
> quasi bei der b) f'(2) = 4 *2 * 0,1 berechnen?
>  
> Oder bin ich ganz auf dem falschen Weg?


Bezug
                                
Bezug
Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 27.09.2015
Autor: JennMaus

Vielen Dank für deine Antwort :)

Also, wenn ich das richtig verstanden habe, sind dann meine Lösungen jeweils:

a) df = f'(x) dx => df = [mm] \frac{sin(x)}{x}+ [/mm]  ln(x) * cos (x) dx

b) df = 4x dx  für dx=0,1 => 4x * 0,1 an der Stelle x=2 => 0,8

c) df = [mm] \frac{e^x (3x^2-x^3}{e^{2x}} [/mm] dx  für dx = -0,1 und x=2  => [mm] -\frac{e^2 (3*2^2-2^3)}{10*e^{2*2}} [/mm] = [mm] -\frac{e^2*4}{10*e^4} [/mm] = [mm] -\frac{2}{5*e^2} [/mm]

Stimmen diese Lösungen?

Bezug
                                        
Bezug
Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 So 27.09.2015
Autor: Richie1401


> Vielen Dank für deine Antwort :)
>  
> Also, wenn ich das richtig verstanden habe, sind dann meine
> Lösungen jeweils:
>  
> a) df = f'(x) dx => df = [mm]\frac{sin(x)}{x}+[/mm]  ln(x) * cos (x)
> dx

Ja

>  
> b) df = 4x dx  für dx=0,1 => 4x * 0,1 an der Stelle x=2 =>
> 0,8

Ja

>  
> c) df = [mm]\frac{e^x (3x^2-x^3}{e^{2x}}[/mm] dx  für dx = -0,1 und
> x=2  => [mm]-\frac{e^2 (3*2^2-2^3)}{10*e^{2*2}}[/mm] =
> [mm]-\frac{e^2*4}{10*e^4}[/mm] = [mm]-\frac{2}{5*e^2}[/mm]

Du kannst vorher schon kürzen:

   [mm] df=\frac{e^x (3x^2-x^3}{e^{2x}}dx=\frac{3x^2-x^3}{e^x}dx [/mm]

Die Werte stimmen.

>  
> Stimmen diese Lösungen?

Alles gut!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]