matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDiffeomorphismus/Homöomorphi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Diffeomorphismus/Homöomorphi
Diffeomorphismus/Homöomorphi < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus/Homöomorphi: Komme einfach nicht weiter...
Status: (Frage) beantwortet Status 
Datum: 22:06 Di 12.04.2005
Autor: ThommyM

Ich habe eine Frage zu dem Beweis folgenden Satzes:

Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm] und [mm]f: U \to V[/mm] ein Homöomorphismus.

Dann gilt:
[mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein Diffeomorphismus.


Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm]. Dazu werden zunächst folgende Reduktionen durchgeführt:
(a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu zeigen.
Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm] Ist das Verlangte für g gezeigt, so folgt der allgemeine Fall für f in x.

(b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm]. Dann gilt mit der Kettenregel:
[mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
Also: Ist Satz im Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
[mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm] gezeigt.

(c) Nach (a) und (b) ist also zu zeigen:
Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.

Reduktion (a) verstehe ich ja. Aber wie kommt man denn in (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das doch eine Matrix, oder nicht? Wie kann man denn dann die Kettenregel anwenden, dazu müsste man doch eine Matrix ableiten?
Den Rest von (b) verstehe ich dann, aber (3) macht mir wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm] gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man jetzt alles auf [mm]K ° f[/mm] an?


        
Bezug
Diffeomorphismus/Homöomorphi: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 15.04.2005
Autor: Julius

Hallo Thomas!

> Ich habe eine Frage zu dem Beweis folgenden Satzes:
>  
> Seien [mm]U, V \subset \IR^{d}[/mm] offen, [mm]f: U \to V[/mm] stetig
> differenzierbar, [mm]df(x)[/mm] sei invertierbar für alle [mm]x \in U[/mm]
> und [mm]f: U \to V[/mm] ein Homöomorphismus.
>  
> Dann gilt:
>  [mm]f^{-1}[/mm] ist stetig differenzierbar und f ist ein
> Diffeomorphismus.
>  
>
> Im Beweis soll zuerst gezeigt werden, dass für alle [mm]x \in U gilt: f^{-1} ist in f(x) differenzierbar[/mm].
> Dazu werden zunächst folgende Reduktionen durchgeführt:
>  (a) Es genügt,  dies für [mm]x=0 \in U mit f(x)=0 \in V[/mm] zu
> zeigen.
>  Denn: Betrachte [mm]g(z)=f(z+x)-f(x)[/mm]. Dann gilt: g hat die
> gewünschten Eigenschaften in [mm]z=0 \gdw f hat die gewünschten Eigenschaften in x.[/mm]
> Ist das Verlangte für g gezeigt, so folgt der allgemeine
> Fall für f in x.
>  
> (b) Betracht die lineare Abb. [mm]K:=(df(0))^{-1} : \IR^{d} \to \IR^{d}[/mm].
> Dann gilt mit der Kettenregel:
>  [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm].
>  Also: Ist Satz im
> Spezialfall x = 0 , f(x) = 0 für [mm]K°f[/mm] gezeigt, so ist
>  [mm]f^{-1} = (K^{-1} ° (K ° f))^{-1} = (K ° f) ° (K^{-1})^{-1} = (K ° f)^{-1} ° K[/mm].
>  
> Somit hätte man die Differenzierbarkeit für [mm]f^{-1}[/mm]
> gezeigt.
>  
> (c) Nach (a) und (b) ist also zu zeigen:
>  Ist f(0)=0 mit [mm]df(0) = I_d[/mm], so ist [mm]f^{-1}[/mm] in 0 diffbar.
>  
> Reduktion (a) verstehe ich ja. Aber wie kommt man denn in
> (b) auf [mm]d(K°f)(0) = (df(0))^{-1} * df(0)= I_d[/mm]? Kann man
> [mm](df(0))^{-1}[/mm] einfach ausklammern, weil eigentlich ist das
> doch eine Matrix, oder nicht?

Nun, wie lautet die Kettenregel:

$d(K [mm] \circ [/mm] f)(0) = dK(f(0)) [mm] \cdot [/mm] df(0)$.

Wir müssen also $dK$ an der Stelle $f(0)$ berechnen.

Nun ist aber [mm] $K=(df(0))^{-1}$ [/mm] eine lineare Abbildung, nämlich die folgende:

$K : [mm] \begin{array}{ccc} \IR^d & \to &\IR^d\\[5pt] x & \mapsto & (df(0))^{-1} \cdot x.\end{array}$. [/mm]

Und das Differential einer linearen Abbildung, die durch eine Matrizenmultiplikation gegeben ist, ist immer konstant gleich der Matrix selbst (die beste lineare Annäherung an eine lineare Funktion ist die lineare Funktion selbst). Daher gilt:

$dK [mm] \equiv (df(0))^{-1}$, [/mm]

also insbesondere:

$dK(f(0)) = [mm] (df(0))^{-1}$. [/mm]

Jetzt klar? :-)


>  Wie kann man denn dann die
> Kettenregel anwenden, dazu müsste man doch eine Matrix
> ableiten?
>  Den Rest von (b) verstehe ich dann, aber (3) macht mir
> wieder einige Schwierigkeiten. Warum muss denn [mm]df(0)=I_d[/mm]
> gelten? Oben war doch [mm]d(K ° f)(0) = I_d[/mm]. Oder wendet man
> jetzt alles auf [mm]K ° f[/mm] an?

Genau das. :-)

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]