matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieDiffeomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Diffeomorphismus
Diffeomorphismus < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffeomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 So 07.11.2010
Autor: Salamence

Aufgabe
Zeigen Sie, dass die folgende Abbildung ein Diffeomorphismus um [mm] \vektor{0\\ 0 \\0} [/mm] ist:

[mm] f:\IR^{3}\to SL_{2}(\IR) [/mm]
[mm] \vektor{x\\y\\z}\mapsto\pmat{ 1 & 0 \\ z & 1 }*\pmat{ exp(x) & 0 \\ 0 & exp(-x) }*\pmat{ 1 & y \\ 0 & 1 } [/mm]

Heyho!

Ich denke, dass man hierbei wohl den Satz über die inverse Funktion verwenden muss. Ist [mm] T_{\vec{0}}(f) [/mm] invertierbar, so gilt das nach diesem doch...

Aber wie zeig ich bloß, dass [mm] T_{\vec{0}}(f) [/mm]  ein Isomorphismus ist???
Warum ist die Dimension von [mm] T_{\E_{2} }(SL_{2}(\IR)) [/mm] überhaupt 3? Dann müsste ich ja nur noch Injektivität oder Surjektivität zeigen...

Ich hab sowieso noch nicht so ganz die Definition der Ableitung verstanden...

[mm] (T_{\vec{0}}(f))(\delta)=(g\mapsto \delta(g\circ [/mm] f))



Oder könnte man vielleicht auch konkret nachrechnen, ob f ein lokaler Diffeomorphismus ist?

        
Bezug
Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 08.11.2010
Autor: rainerS

Hallo!

> Zeigen Sie, dass die folgende Abbildung ein
> Diffeomorphismus um [mm]\vektor{0\\ 0 \\0}[/mm] ist:
>  
> [mm]f:\IR^{3}\to SL_{2}(\IR)[/mm]
>  [mm]\vektor{x\\y\\z}\mapsto\pmat{ 1 & 0 \\ z & 1 }*\pmat{ exp(x) & 0 \\ 0 & exp(-x) }*\pmat{ 1 & y \\ 0 & 1 }[/mm]
>  
> Heyho!
>  
> Ich denke, dass man hierbei wohl den Satz über die inverse
> Funktion verwenden muss. Ist [mm]T_{\vec{0}}(f)[/mm] invertierbar,
> so gilt das nach diesem doch...
>  
> Aber wie zeig ich bloß, dass [mm]T_{\vec{0}}(f)[/mm]  ein
> Isomorphismus ist???
> Warum ist die Dimension von [mm]T_{\E_{2} }(SL_{2}(\IR))[/mm]
> überhaupt 3? Dann müsste ich ja nur noch Injektivität
> oder Surjektivität zeigen...

Mit wievielen reellen Parametern kannst du ein Element von [mm] $SL_{2}(\IR)$ [/mm] beschreiben? Welche Dimension hat also der Tangentialraum von [mm] $SL_{2}(\IR)$ [/mm] ?

Ich weiss allerdings nicht, welches Objekt du mit [mm]T_{\E_{2} }(SL_{2}(\IR))[/mm] meinst.

>
> Ich hab sowieso noch nicht so ganz die Definition der
> Ableitung verstanden...
>  
> [mm](T_{\vec{0}}(f))(\delta)=(g\mapsto \delta(g\circ f))[/mm]

[mm] $\delta$ [/mm] ist eine Derivation, g eine Funktion auf der Zielmannigfaltigkeit (hier: [mm] $SL_{2}(\IR)$). [/mm] Die Derivationen bilden den Tangentialraum des Punktes 0, daher ist [mm] $T_{\vec{0}}(f)$ [/mm] eine Abbildung von diesem Tangentialraum in den Tangentialraum von [mm] $SL_{2}(\IR)$ [/mm] am Punkt $f(0)$.

Einfacher: sei [mm] $\gamma$ [/mm] eine glatte Kurve in [mm] $\IR^3$ [/mm] durch 0.  Dann ist [mm] $f\circ \gamma$ [/mm] eine Kurve in [mm] $SL_{2}(\IR) [/mm] $ durch $f(0)$ (zumindest wenn f ein Diffeomorphismus ist). Dann ist [mm] $\delta(g)= (g\circ \gamma)'(0) [/mm] $.

Fasse ich [mm] $\gamma'(0)$ [/mm] als Tangentialvektor auf, dann ist

[mm] (T_{\vec{0}}(f)) (\gamma'(0)) = (f\circ \gamma)' (0) [/mm]

der zugehörige Tangentialvektor der Kurve [mm] $f\circ \gamma$ [/mm] im Punkt $f(0)$.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]