matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDichten, Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Dichten, Unabhängigkeit
Dichten, Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichten, Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 18.01.2011
Autor: override88

Aufgabe
Der Zufallsvektor (X, Y) sei absolutstetig verteilt mit der Dichte
f(x, [mm] y)=\begin{cases} \bruch{2}{3}x+\bruch{4}{3}y, & \mbox{für } x \in [0, 1], y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]

a) Bestimmen Sie die Dichten [mm] f_{X} [/mm] und [mm] f_{Y}. [/mm]
b) Bestimmen Sie die Verteilungsfunktionen [mm] F_{X} [/mm] und [mm] F_{Y}. [/mm]
c) Berechnen Sie [mm] P_{X}([0, \bruch{1}{2}]), P_{Y}([0, \bruch{1}{2}]), P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}). [/mm]
d) Sind X und Y unabhängig?

Hallo,

ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann mich wer korrigieren falls meine Ansätze falsch sind?

zu a)
In der Vorlesung haben wir gelernt, dass wir die "Randdichte" [mm] f_{X} [/mm] bestimmen indem wir f nach y integrieren (analog für [mm] f_{Y}). [/mm]
Also erhalte ich
[mm] f_{X}(x) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dy} [/mm] = [mm] \begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]
[mm] f_{Y}(y) [/mm] = [mm] \integral_{0}^{1}{f(x, y) dx} [/mm] = [mm] \begin{cases} \bruch{1}{3}, & \mbox{für } y \in [0, 1] \\ 0, & \mbox{sonst} \end{cases} [/mm]

Was mich etwas verunsichert ist, dass wenn ich [mm] f_{X} [/mm] oder [mm] f_{Y} [/mm] (Lebesgue-)integriere, nicht 1 rauskommt. Das müsste doch für eine Dichte der Fall sein oder?

zu b)
Hier integriere ich einfach die entsprechenden Dichten:
[mm] F_{X}(x) [/mm] = [mm] \integral_{-\infty}^{x}{f_{X}(y) dy} [/mm] = [mm] \begin{cases} 0, & \mbox{für } x < 0 \\ \bruch{2}{3}x, & \mbox{für} x \in [0, 1] \\ 1, & \mbox{sonst} \end{cases} [/mm]
[mm] F_{Y}(y) [/mm] = [mm] \integral_{-\infty}^{y}{f_{Y}(x) dx} [/mm] = [mm] \begin{cases} 0, & \mbox{für } y < 0 \\ \bruch{1}{3}y, & \mbox{für} y \in [0, 1] \\ 1, & \mbox{sonst} \end{cases} [/mm]

zu c)
[mm] P_{X}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{X}(x) dx} [/mm] = [mm] [\bruch{2}{3}x]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{3} [/mm]

[mm] P_{Y}([0, \bruch{1}{2}]) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{f_{Y}(y) dy} [/mm] = [mm] [\bruch{1}{3}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{6} [/mm]

[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] habe ich iteriert (Satz von Fubini) berechnet:
[mm] P(\{X \in [0, \bruch{1}{2}], Y \in [0, \bruch{1}{2}]\}) [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\integral_{0}^{\bruch{1}{2}}{\bruch{2}{3}x+\bruch{4}{3}y dx dy}} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{[\bruch{1}{3}x² + \bruch{4}{3}y]_{0}^{\bruch{1}{2}} dy} [/mm] = [mm] \integral_{0}^{\bruch{1}{2}}{\bruch{1}{12} dy} [/mm] = [mm] [\bruch{1}{12}y]_{0}^{\bruch{1}{2}} [/mm] = [mm] \bruch{1}{24} [/mm]

Stimmt das?

zu d)
Hier bin ich mir bei der Begründung nicht sicher.
Sind X, Y abhängig, da das Produkt der Randverteilungen ungleich dem Produkt der gemeinsamen Verteilung ist?
[mm] (\bruch{1}{3} [/mm] * [mm] \bruch{1}{6} [/mm] = [mm] \bruch{1}{18} \not= \bruch{1}{24} [/mm]
Man kann das auch irgendwie über die Dichten begründen.

Danke für Hilfe/Vorschläge.

        
Bezug
Dichten, Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 18.01.2011
Autor: luis52


>  
> ich bin mir bei obigen Teilaufgaben nicht ganz sicher. Kann
> mich wer korrigieren falls meine Ansätze falsch sind?
>  
> zu a)
>  In der Vorlesung haben wir gelernt, dass wir die
> "Randdichte" [mm]f_{X}[/mm] bestimmen indem wir f nach y integrieren
> (analog für [mm]f_{Y}).[/mm]
>  Also erhalte ich
>   [mm]f_{X}(x)[/mm] = [mm]\integral_{0}^{1}{f(x, y) dy}[/mm] = [mm]\begin{cases} \bruch{2}{3}, & \mbox{für } x \in [0, 1] \\ 0, & \mbox{sonst} \end{cases}[/mm]

[notok] [mm] $\frac{2 x}{3}+\frac{2}{3}$ [/mm]

> Was mich etwas verunsichert ist, dass wenn ich $ [mm] f_{X} [/mm] $ oder $ [mm] f_{Y} [/mm] $
> (Lebesgue-)integriere, nicht 1 rauskommt.

Zurecht.

> Das müsste doch für eine Dichte  der Fall sein oder?

Ja.


vg Luis



Bezug
                
Bezug
Dichten, Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 18.01.2011
Autor: override88


> [notok] [mm]\frac{2 x}{3}+\frac{2}{3}[/mm]

Wie kommt man darauf? Ist nicht [mm] \integral_{0}^{1}{\bruch{2}{3}x + \bruch{4}{3}y dy} [/mm] = [mm] [\bruch{2}{3}x [/mm] + [mm] \bruch{2}{3}y²]_{0}^{1} [/mm] = [mm] \bruch{2}{3}x [/mm] + [mm] \bruch{2}{3} [/mm] - [mm] (\bruch{2}{3}x [/mm] + 0) = [mm] \bruch{2}{3} [/mm] ?


Bezug
                        
Bezug
Dichten, Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 18.01.2011
Autor: luis52


> > [notok] [mm]\frac{2 x}{3}+\frac{2}{3}[/mm]
>  
> Wie kommt man darauf? Ist nicht
> [mm]\integral_{0}^{1}{\bruch{2}{3}x + \bruch{4}{3}y dy}[/mm] =
> [mm][\bruch{2}{3}x[/mm] + [mm]\bruch{2}{3}y²]_{0}^{1}[/mm] = [mm]\bruch{2}{3}x[/mm] +
> [mm]\bruch{2}{3}[/mm] - [mm](\bruch{2}{3}x[/mm] + 0) = [mm]\bruch{2}{3}[/mm] ?
>  

[notok]

$ [mm] \integral_{0}^{1}\left(\bruch{2}{3}x + \bruch{4}{3}y\right) [/mm] dy [mm] =\integral_{0}^{1}\bruch{2}{3}xdy [/mm] + [mm] \integral_{0}^{1}\bruch{4}{3}y dy=\bruch{2}{3}x\integral_{0}^{1}dy [/mm] + [mm] \bruch{4}{3}\integral_{0}^{1}y dy=\ldots$ [/mm]


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]