matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDiagonalisierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage zu Diagonalisierbarkeit
Status: (Frage) beantwortet Status 
Datum: 17:47 Fr 30.04.2010
Autor: dio

Hallo!

Ich habe leider bei der Diagonalisierbarkeit einige Verständnisschwierigkeiten.

Und zwar ist mir der Unterschied zwischen "Diagonalisierbarkeit" und "orthogonaler Diagonalisierbarkeit" nicht ganz klar.

Das ersteres mit Hilfe der Inversen und letzteres mit Hilfe der Adjunkten gemacht wird, weiß ich schon - aber wars das schon?

Wäre super, wenn mir da vielleicht jemand auf die Sprünge helfen könnte :)

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Fr 30.04.2010
Autor: angela.h.b.

Hallo,

[willkommenmr].

Bei Diagonalisierbarkeit geht es ja um dies:
man hat eine lineare Abbildung mit der Darstellungsmatrix A, und man fragt sich, ob es eine Basis gibt, bzgl derer die Darstellungsmatrix von f Diagonalgestalt hat.

Bei orthogonaler Diagonalisierbarkeit ist die Frage:
gibt es sogar eine ONB, bzgl derer die Darstellungsmatrix Diagonalgestalt hat.
Die orthogonale Diagonalisierbarkeit ist also ein Spezialfall der Diagonalisierbarkeit.

Gruß v. Angela

Bezug
                
Bezug
Diagonalisierbarkeit: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Sa 01.05.2010
Autor: dio

Vielen lieben Dank für die rasche Antwort!

So ist mir das ganze doch direkt viel klarer :)

Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Sa 01.05.2010
Autor: dio

Jetzt tut sich mir noch eine Frage auf:

Kann man denn einen Zusammenhang zwischen beidem aufstellen?
Ist A diagonalisierbar, wenn sie orthogonal diagonalisierbar ist?
Und andersrum?

Wäre sehr dankbar für weitere Hilfe :)

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 01.05.2010
Autor: angela.h.b.


> Jetzt tut sich mir noch eine Frage auf:
>
> Kann man denn einen Zusammenhang zwischen beidem
> aufstellen?
>  Ist A diagonalisierbar, wenn sie orthogonal
> diagonalisierbar ist?

Hallo,

ja, natürlich.

Diagonalisierbar: es gibt eine Basis aus Eigenvektoren
orthogonal diagonalisierbar: es gibt eine ONB aus Eigenvektoren

>  Und andersrum?

Im allgemeinen gilt das nicht - bei symmetrischen Matrizen aber schon, denn symmetrische Matrizen sind ja allesamt orthogonal diagonalisierbar.

Gruß v. Angela

>  
> Wäre sehr dankbar für weitere Hilfe :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]