Diagonalisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien f und g diagonalisierbare Endomorphismen des endlichdimensionalen K-Vektorraums V mit f [mm] \circ [/mm] g = g [mm] \circ [/mm] f. Zeigen Sie, dass f und g gleichzeitig diagonalisierbar sind (d.h., dass eine Basis von V existiert, bezüglich der sowohl f als auch g durch Diagonalmatrizen dargestellt werden).
Hinweis: Verwenden Sie die 2. Charaktersisierung der Diagonalisierbarkeit eines Endomorphismus f [mm] \in [/mm] hom(V):
[mm] V=\oplus E(\lambda) [/mm] mit [mm] \lambda \in [/mm] spec (f) |
hallo!
also ich steh hier irgendwie total aufm schlauch. hat jemand nen tipp oder ne lösung???
vielen dank im vorraus....
|
|
|
|
> Es seien f und g diagonalisierbare Endomorphismen des
> endlichdimensionalen K-Vektorraums V mit f [mm]\circ[/mm] g = g
> [mm]\circ[/mm] f. Zeigen Sie, dass f und g gleichzeitig
> diagonalisierbar sind (d.h., dass eine Basis von V
> existiert, bezüglich der sowohl f als auch g durch
> Diagonalmatrizen dargestellt werden).
>
> Hinweis: Verwenden Sie die 2. Charaktersisierung der
> Diagonalisierbarkeit eines Endomorphismus f [mm]\in[/mm] hom(V):
> [mm]V=\oplus E(\lambda)[/mm] mit [mm]\lambda \in[/mm] spec (f)
> hallo!
> also ich steh hier irgendwie total aufm schlauch. hat
> jemand nen tipp oder ne lösung???
Hallo,
eine Lösung kann ich Dir aus dem Stand nicht anbieten -
ich glaube, ich habe da einige Lücken an Stellen, wo Kenntnisse sein sollten... (vielleicht irgendwas mit Summe von Projektionen...)
Ich komme nur soweit, daß, falls [mm] \lambda [/mm] ein Eigenwert von f mit Eigenvektor x ist, g(x) ebenfalls ein Eigenvektor von f ist zum Eigenwert [mm] \lambda.
[/mm]
In einem Spezialfall allerdings ist das weitere Vorgehen einfach.
Wenn nämlich alle EWe von f verschieden sind, erhält man, daß x ein Eigenvektor von g zum Eigenwert [mm] \lambda [/mm] ist, daß f und g also dieselben Eigenvektoren und -werte haben, womit man dann fertig ist.
Gruß v. Angela
|
|
|
|