matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDeterminate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Determinate
Determinate < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinate: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:14 So 06.11.2016
Autor: questionpeter

Aufgabe
Eine quadratische Blockmatrix

[mm] M:=\pmat{A&B\\C&D} [/mm]

mit [mm] n\times [/mm] n Matrizen A,B,C und D erfülle die Gleichung

[mm] M^{-1}=\pmat{D^T&-B^T\\-C^T&A^T} [/mm]

Zeige, dass die Determinate von M gleich 1 ist.

Moin,

ich brauche wieder eure Hilfe.
ich habe erstmal [mm] M*M^{-1} [/mm] berechnet:

[mm] M*M^{-1}=\pmat{A&B\\C&D}*\pmat{D^T&-B^T\\-C^T&A^T}=\pmat{AD^T-BC^T& -AB^T+BA^T\\CD^T-DC^T&-CB^T+DA^T}=\pmat{E_n&0\\0&E_n} [/mm]

D.h. wir haben dann:

(I)   [mm] AD^T-BC^T)=E_n [/mm]
(II)   [mm] -AB^T+BA^T=0 [/mm]
(III)  [mm] CD^T-DC^T=0 [/mm]
(IV)  [mm] -CB^T+DA^T=E_n [/mm]

(I) [mm] AD^T-BC^T)=E_n \Rightarrow AD^T=E_n [/mm] oder [mm] BC^T=E_n [/mm]
d.h. [mm] D^T [/mm] ist Inverse zu A bzw. [mm] C^T [/mm] ist Inverse zu B
[mm] \Rightarrow [/mm] D,C orthogonal [mm] (D^T=D^{-1} [/mm] bzw. [mm] C^T=C^{-1}) [/mm]
[mm] \Rightarrow [/mm] A=D bzw. B=C
[mm] \Rightarrow AD^T=AA^T=AA^{-1}=E_n [/mm] dann ist [mm] BC^T [/mm] Nullmatrix

(II)  [mm] -AB^T+BA^T=0 \gdw AB^T=BA^T [/mm]


[mm] \Rightarrow [/mm] A und D bzw C und B müssen Einheitsmatrizen sein

[mm] \Rightarrow [/mm] det(M)=1

Ist es soweit richtg was ich gemacht habe?
dankeschön im Voraus.


        
Bezug
Determinate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 So 06.11.2016
Autor: donquijote


> Eine quadratische Blockmatrix
>  
> [mm]M:=\pmat{A&B\\C&D}[/mm]
>  
> mit [mm]n\times[/mm] n Matrizen A,B,C und D erfülle die Gleichung
>  
> [mm]M^{-1}=\pmat{D^T&-B^T\\-C^T&A^T}[/mm]
>  
> Zeige, dass die Determinate von M gleich 1 ist.
>  Moin,
>
> ich brauche wieder eure Hilfe.
>  ich habe erstmal [mm]M*M^{-1}[/mm] berechnet:
>  
> [mm]M*M^{-1}=\pmat{A&B\\C&D}*\pmat{D^T&-B^T\\-C^T&A^T}=\pmat{AD^T-BC^T& -AB^T+BA^T\\CD^T-DC^T&-CB^T+DA^T}=\pmat{E_n&0\\0&E_n}[/mm]
>  
> D.h. wir haben dann:
>  
> (I)   [mm]AD^T-BC^T)=E_n[/mm]
>  (II)   [mm]-AB^T+BA^T=0[/mm]
>  (III)  [mm]CD^T-DC^T=0[/mm]
>  (IV)  [mm]-CB^T+DA^T=E_n[/mm]
>  
> (I) [mm]AD^T-BC^T)=E_n \Rightarrow AD^T=E_n[/mm] oder [mm]BC^T=E_n[/mm]
>  d.h. [mm]D^T[/mm] ist Inverse zu A bzw. [mm]C^T[/mm] ist Inverse zu B
>  [mm]\Rightarrow[/mm] D,C orthogonal [mm](D^T=D^{-1}[/mm] bzw. [mm]C^T=C^{-1})[/mm]
>  [mm]\Rightarrow[/mm] A=D bzw. B=C
>  [mm]\Rightarrow AD^T=AA^T=AA^{-1}=E_n[/mm] dann ist [mm]BC^T[/mm]
> Nullmatrix
>  
> (II)  [mm]-AB^T+BA^T=0 \gdw AB^T=BA^T[/mm]
>  
>
> [mm]\Rightarrow[/mm] A und D bzw C und B müssen Einheitsmatrizen
> sein
>  
> [mm]\Rightarrow[/mm] det(M)=1
>  
> Ist es soweit richtg was ich gemacht habe?
>  dankeschön im Voraus.
>  

Hallo, ohne mir deine Rechnung im Detail angesehen zu haben: Das kann nicht stimmen, wie schon das Beispiel  [mm]M:=\pmat{3&2\\4&3}[/mm] zeigt.


Bezug
                
Bezug
Determinate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:39 Di 08.11.2016
Autor: questionpeter

ich komme einfach nicht weiter, daher wäre ich für jeden tipp dankbar.


Bezug
        
Bezug
Determinate: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mi 09.11.2016
Autor: angela.h.b.


> Eine quadratische Blockmatrix

>

> [mm]M:=\pmat{A&B\\C&D}[/mm]

>

> mit [mm]n\times[/mm] n Matrizen A,B,C und D erfülle die Gleichung

>

> [mm]M^{-1}=\pmat{D^T&-B^T\\-C^T&A^T}[/mm]

>

> Zeige, dass die Determinate von M gleich 1 ist.

Hallo,

wenn ich mich nicht täusche, ist es mir immerhin gelungen zu zeigen, daß detM=1 oder detM=-1.
Ich habe das Ergebnis durch Anwenden der Regeln für Determinanten (Spalten/Zeilentausch und Multiplikation v. Zeilen/Spalten) erreicht:

[mm] detM^{-1}=[/mm]  [mm]det\pmat{D^T&-B^T\\-C^T&A^T}[/mm]


[mm]=(-1)^ndet\pmat{-B^T&D^T\\A^T&-C^T}[/mm]

[mm]=(-1)^{2n}det\pmat{A^T&-C^T\\-B^T&D^T}[/mm]

[mm]=(-1)^{3n}det\pmat{-A^T&C^T\\-B^T&D^T}[/mm]

[mm]=(-1)^{4n}det\pmat{A^T&C^T\\B^T&D^T}[/mm]

[mm] =detM^T=detM, [/mm]

also ist [mm] (detM)^2=1. [/mm]

Aber weiter weiß ich jetzt auch nicht mehr.

LG Angela
 

Bezug
        
Bezug
Determinate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:21 Di 15.11.2016
Autor: angela.h.b.

Hallo,

weiß hier vielleicht noch jemand weiter?

Es würde mich interessieren, wie man zeigen kann, daß die Determinante +1 ist, vorzugsweise, wenn dies mit Anfängermitteln get.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]