matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminanten Berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Determinanten Berechnung
Determinanten Berechnung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten Berechnung: EInfachere Möglichkeit?
Status: (Frage) beantwortet Status 
Datum: 13:08 Fr 24.01.2014
Autor: stromberg09

Aufgabe
Berechnen sie die Determinante von

A= [mm] \pmat{ x & b & 0 & b \\ 0 & x & b & 0 \\ 0 & b & x & b \\ b & 0 & b & x } [/mm]

Ich habe zunächst mittels Zeilenoperationen die Matrix auf folgende Form gebracht:

[mm] \pmat{ x & b & 0 & b \\ b & x & b & 0 \\ -x & 0 & x & 0 \\ 0 & -x & 0 & x } [/mm]

Anschließend habe ich dann nach der letzten Spalte entwickelt und als Ergebnis

[mm] det(A)=x^{4}-4b^{2}x^{2} [/mm]

erhalten.

Das Ergebnis wurde auch mit Maple geprüft und dürfte soweit richtig sein.

Allerdings soll es zur Lösung dieser Determinante eine einfachere Möglichkeit geben.

Hat jemand eine Idee wie man die Determinante der Matrix A einfacher bzw. eleganter bestimmen könnte?

        
Bezug
Determinanten Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Fr 24.01.2014
Autor: Richie1401

Hallo,

du könntest die Determinante sofort nach der ersten Spalte entwickeln. Da hast du nur zwei Unterdeterminanten.

Andere Möglcihkeit: Bringe die Matrix die Form:
[mm] \pmat{ a & & & \\ 0 & b & & \\ 0 & 0 & c & \\ 0 & 0 & 0 & d } [/mm]

Dann ist die Determinante: [mm] \det\pmat{ a & & & \\ 0 & b & & \\ 0 & 0 & c & \\ 0 & 0 & 0 & d }=abcd [/mm]

Bezug
                
Bezug
Determinanten Berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 27.01.2014
Autor: stromberg09

Alles klar. Dann hat sich das ganze erledigt. Vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]