matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminanten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Determinanten" - Determinanten
Determinanten < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinanten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:29 So 14.01.2007
Autor: Ron85

Hallo Matheraum.

Ich brauch dringend mal ein paar Ansätze für die folgende Aufgabe:

Sei A [mm] \in K^{nxn} [/mm] eine Matrix in spezieller Blockform

[mm] \pmat{ A_{11} & A_{12} \\ 0 & A_{22} } [/mm]

wobei [mm] A_{11} \in K^{pxp}, A_{12} \in K^{pxq}, A_{22} \in K^{qxq} [/mm]
und p+q = n.

Zeigen Sie (z.B. mit Gauß-Algorithmus)

det A = det [mm] A_{11}*det A_{22} [/mm]



        
Bezug
Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 So 14.01.2007
Autor: DaMenge

Hi,

wo genau ist denn das Problem ?!?
argumentiere doch einfach, dass du die Matrix mit Gauss auf obere Dreiecksform (Zeilenstufenform) bringen kannst und nutze dann, dass die Determinante als Produkt der Diagonaleintraege dargestellt werden kann...
(und dies auch fuer die beiden beteiligten Bloecke gilt !)

versuchst du dich nochmal?

btw: bitte in zukunft darauf achten ins UNI-La-Forum zu posten - nicht Schul-LA..

viele Gruesse
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]