matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante und Inverses
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Determinante und Inverses
Determinante und Inverses < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante und Inverses: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:19 Do 17.02.2011
Autor: i-man

Aufgabe
Sei R ein kommutativer Ring mit 1.

A [mm] \in [/mm] M(n [mm] \times [/mm] n, R) invertierbar [mm] \gdw [/mm] det(A) [mm] \in [/mm] R*

und R* ist die Menge der Einheiten in R, der multiplikativen invertierbaren Elemente. Beweisen Sie damit folgenden Aussage:

[mm] \pmat{ a & b \\ c & d } \in [/mm] M(2 [mm] \times [/mm] 2, [mm] \IZ) [/mm] invertierbar [mm] \Rightarrow [/mm] ggT(a,b) = 1


Lösungsansatz:

Also da laut VSS die Matrix inventierbar ist folgt det(A) = ad-bc [mm] \not= [/mm] 0.

Laut VSS ist dann die det(A) = {1,-1}, da das die einzigen Elemente in [mm] \IZ [/mm] sind die ein multiplikatives Inverses besitzen ( sich selbst und 1,-1).

naja und weiter komme ich nicht.

Wäre sehr dankbar wenn mir jmd weiter helfen könnte.

Gruß I-Man

        
Bezug
Determinante und Inverses: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Fr 18.02.2011
Autor: Lippel

Hallo,

> Sei R ein kommutativer Ring mit 1.
>  
> A [mm]\in[/mm] M(n [mm]\times[/mm] n, R) invertierbar [mm]\gdw[/mm] det(A) [mm]\in[/mm] R*
>  
> und R* ist die Menge der Einheiten in R, der
> multiplikativen invertierbaren Elemente. Beweisen Sie damit
> folgenden Aussage:
>  
> [mm]\pmat{ a & b \\ c & d } \in[/mm] M(2 [mm]\times[/mm] 2, [mm]\IZ)[/mm] invertierbar
> [mm]\Rightarrow[/mm] ggT(a,b) = 1
>  
> Lösungsansatz:
>  
> Also da laut VSS die Matrix inventierbar ist folgt det(A) =
> ad-bc [mm]\not=[/mm] 0.
>  
> Laut VSS ist dann die det(A) = {1,-1}, da das die einzigen
> Elemente in [mm]\IZ[/mm] sind die ein multiplikatives Inverses
> besitzen ( sich selbst und 1,-1).
>  
> naja und weiter komme ich nicht.
>  
> Wäre sehr dankbar wenn mir jmd weiter helfen könnte.

Das Lemma von Bézout besagt: Sind $a,b [mm] \in \IZ$ [/mm] und [mm] $d\:$ [/mm] deren ggT, so gibt es $r, s [mm] \in \IZ: [/mm] ra+sb=d$.
[mm] $d\:$ [/mm] ist außerdem die kleinste positive ganze Zahl, für die diese Gleichung eine Lösung für r und s in den ganzen Zahlen besitzt.
Es gilt also: Existieren $r,s [mm] \in \IZ: [/mm] ra+sb = 1$, dann sind a und b teilerfremd, d.h. [mm] $ggt(a,b)=1\:$. [/mm]
Kommst du damit weiter?

LG Lippel

Bezug
                
Bezug
Determinante und Inverses: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Sa 19.02.2011
Autor: i-man

achja ..

vielen dank

Gruß i-man

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]