matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante mit Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Determinante mit Gauß
Determinante mit Gauß < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 06.12.2012
Autor: Der-Madde-Freund

Hi,

ich habe im Skript folgende Sätze gefunden:
1. Addieren des Vielfachen einer Zeile zu einer anderen:
Die Determinante ändert sich nicht.

2. Multiplizieren einer Zeile mit einer Zahl c [mm] \not= [/mm] 0:
Die Determinante wird ebenfalls mit c multipliziert.

3. Vertauschen zweier Zeilen:
Die Determinante wird mit −1 multipliziert (wechselt ihr Vorzeichen).

------------------------------------------------------------------------------

Jetzt habe ich folgende Matrix, von der ich die Determinante mit Gauß bestimmen möchte:

[mm] A=\pmat{ 1 & 2 & -3 & 4 \\ 2 & 7 & 0 & 3 \\ 3 & -4 & 0 & -4 \\ 4 & 9 & 1 & 2} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 4 & 6 & -5 \\ 0 & -10 & 9 & -16 \\ 0 & 1 & 13 & -14} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & -10 & 9 & -16 \\ 0 & 3 & 6 & -5} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 139 & -156 \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & 0 & -\frac{5}{139}} [/mm]

Da ich einmal eine Zeile getauscht habe und eine Zeile in der 4. Matrix mit [mm] \frac{1}{139} [/mm] multipliziert habe, habe ich die Determinate wie folgt berechnet:

[mm] det(A)=1\cdot1\cdot1\cdot(-\frac{5}{139})\cdot(-1)\cdot139=5 [/mm]


Das Ergebnis stimmt auch nur mein Problem ist der fett hervorgehobene Satz im Skript: Ich habe ja in der 4. Matrix eine Zeile mit [mm] c=\frac{1}{139} [/mm] multipliziert. Die Determinante habe ich ja aber mit 139, also dem Kehrwert von c multipliziert, laut Skript müsste das ja auch auch [mm] \frac{1}{139} [/mm] sein... Was verstehe ich daran jetzt falsch?

        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Do 06.12.2012
Autor: chrisno

Du möchtest den Wert der Determinante erhalten. Nachdem Du die Zeile mit 1/139 multiplizziert hast, ist das Gesamtergebnis umn diesen Faktor zu klein. Das bringst Du wieder in Ordnung, indem Du mit 139 multiplizierst.
Eine andere Betrachtunsweise: Du hast 139 "ausgeklammert".

Bezug
                
Bezug
Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Do 06.12.2012
Autor: Der-Madde-Freund

Ich verstehe das Verfahren an sich ja, wenn man das nicht täte, wäre im Prinzip ja jede Determinate auch Eins. Aber müsste im Skript dann nicht stehen, das man die Determinante dann mit [mm] \frac{1}{c} [/mm] multiplizieren muss?

Bezug
                        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Do 06.12.2012
Autor: chrisno

Nein, das steht völlig richtig im Skript:
Wenn Du eine Zeile mit c multipliziertst, dann hat die Determinante dieser neuen Matrix den c-fachen Wert der Determinante der ursprünglichen Matrrix.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]