matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 10.11.2004
Autor: Marle

Hallo zusammen,

eine Aufgabe lautet:

Es sei A = [mm] (a_{ik})_{i,k=1,...,n} \in \IR^{n \times n} [/mm] mit [mm] a_{ik} \in [/mm] {-1,1} für alle i,k [mm] \in [/mm] {1,...,n}. Man zeige, dass det(A)durch [mm] 2^{n-1} [/mm] teilbar ist.

habe da den kompletten Hänger!
Kann mir bitte jemand sagen was das [mm] a_{ik} \in [/mm] {-1,1} bedeutet?
Bin euch sehr dankbar!

die Marle

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinante: Einträge der Matrix
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Mi 10.11.2004
Autor: cremchen

Halli hallo!

Also zumindest das eine kann ich dir sagen:

[mm] a_{ik} \in [/mm] {-1,1}

bedeutet, dass alle Einträge der Matrix entweder gleich 1 oder gleich -1 sind!

Das wars schon!

Liebe Grüße
Ulrike



Bezug
        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 10.11.2004
Autor: Micha

Hallo!
> Hallo zusammen,
>  
> eine Aufgabe lautet:
>  
> Es sei A = [mm](a_{ik})_{i,k=1,...,n} \in \IR^{n \times n}[/mm] mit
> [mm]a_{ik} \in[/mm] {-1,1} für alle i,k [mm]\in[/mm] {1,...,n}. Man zeige,
> dass det(A)durch [mm]2^{n-1}[/mm] teilbar ist.
>  
> habe da den kompletten Hänger!
>  Kann mir bitte jemand sagen was das [mm]a_{ik} \in[/mm] {-1,1}
> bedeutet?

Das bedeutet dass deine Matrix nur Einträge 1 oder -1 hat. Andere Elemente sind nicht zugelassen.
Was bedeutet das für die Determinante? Nun ich würde versuchen das mit Laplace zu entwickeln und sehen
was rauskommen kann...

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]