matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDeterminante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Determinante
Determinante < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 30.12.2006
Autor: Thomas85

Hallo
Ich hänge grad mal wieder..
an folgender AUfgabe:

Zeigen Sie: Für jede schiefsymmetrische Matrix A mit ungeradem n gilt det(A)=0 .
Ich hab versucht das mit vollständiger Induktion zu zeigen aber kriege den Induktionsschluss nicht hin.
Habe bisher gezeigt dass die Diagonale [mm] a_{ii}=0 [/mm] sein muss und [mm] a_{ij}=-a_{ji} [/mm] gilt.

hoffe jmd hilft mir

mgf thomas



        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Sa 30.12.2006
Autor: ullim

Hi,

für eine (nxn) Matrix A gilt für alle [mm] a\in \IR [/mm]

[mm] det(a*A)=a^n*det(A) [/mm] und es gilt für jede (nxn) Matrix A

[mm] det(A)=det(A^T) [/mm]

Da für eine schiefsymetrische Matrix A

[mm] A=-A^T [/mm] gilt, folgt

[mm] det(A)=(-1)^n*det(A). [/mm] Falls n ungerade ist,

folgt [mm] (-1)^n=-1 [/mm] also det(A)=-det(A),

also det(A)=0

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]