matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDet einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Det einer Matrix
Det einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Det einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 05.04.2006
Autor: AriR

Aufgabe
Seien x1, . . . , xn Elemente eines Körpers K. Die Matrix A = (aij)
in Mn×n(K) sei gegeben durch aij = [mm] x^{i-1}_j [/mm] . Berechnen Sie det(A).

(frage zuvor nicht gestellt)

Hey leute.. kaum ist das Semster wieder angefangen kommen die übungen schon wieder :D

also für die Matrix habe ich folgende Form

[mm] \pmat{ 1 & 1 & & ... \\ x_1 & x_2 & x_3 & ... \\ x_1^2 & x_2^2 & x_3^2 & ... \\ x_1^3 & x_2^3 & x_3^3 & ... } [/mm]

die habe ich transponiert und das -1Fache der ersten zeile bei jeder abgezogen. dann habe ihc LAplace angewandt und bekomme raus, dass ich nur noch det von folgender MAtrix berrechnen muss:

[mm] \pmat{ x_2-x_1 & x_2^2-x_1^2 & x_2^3-x_1^3 & ... & x_2^{n-1}-x_1^{n-1} \\ x_3-x_1 & x_3^2-x_1^2 & x_3^3-x_1^3 & ... & x_3^{n-1}-x_1^{n-1}} [/mm]

die letzen zeilen gehen dann halt so weiter bis man da irgendwann [mm] x_n-1 [/mm] usw stehen hat..

hat jemand eine idee wie ich davon jetzt die determinante ermitteln kann?

ich hab erhlichgesagt keine ahnung

Danke im voraus.. gruß Ari


        
Bezug
Det einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 05.04.2006
Autor: felixf

Hallo!

> Seien x1, . . . , xn Elemente eines Körpers K. Die Matrix A
> = (aij)
>  in Mn×n(K) sei gegeben durch aij = [mm]x^{i-1}_j[/mm] . Berechnen
> Sie det(A).
>  (frage zuvor nicht gestellt)
>  
> Hey leute.. kaum ist das Semster wieder angefangen kommen
> die übungen schon wieder :D
>  
> also für die Matrix habe ich folgende Form
>  
> [mm]\pmat{ 1 & 1 & & ... \\ x_1 & x_2 & x_3 & ... \\ x_1^2 & x_2^2 & x_3^2 & ... \\ x_1^3 & x_2^3 & x_3^3 & ... }[/mm]

Diese Matrix hat uebrigens einen Namen: van-der-Monde-Matrix. Und die Determinante heisst dann van-der-Monde-Determinante.

> die habe ich transponiert und das -1Fache der ersten zeile
> bei jeder abgezogen. dann habe ihc LAplace angewandt und
> bekomme raus, dass ich nur noch det von folgender MAtrix
> berrechnen muss:
> [...]

Ich glaube nicht das du so zum Ziel kommst.

Versuch doch mal folgendes:
- Betrachte die urspruengliche Matrix, und ziehe von der $i$-ten Zeile das [mm] $x_1$-fache [/mm] der $(i-1)$-ten Zeile ab.
- Danach machst du eine Entwicklung nach der ersten Spalte.
- Jetzt benutzt du, dass die Determinante eine Multilinearform ist: Du klammerst aus jeder Spalte der uebriggebliebenden Matrix den Faktor [mm] $x_i [/mm] - [mm] x_1$ [/mm] aus, $2 [mm] \le [/mm] i [mm] \le [/mm] n$, und holst ihn aus der Determinante raus.
- Jetzt verbleibt wieder so eine van-der-Monde-Matrix, aber von der Groesse $(n-1) [mm] \times [/mm] (n-1)$, und du kannst per Induktion weitermachen.

HTH & LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]