matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDet(A)=0 Spaltenvektoren lin.a
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Det(A)=0 Spaltenvektoren lin.a
Det(A)=0 Spaltenvektoren lin.a < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Det(A)=0 Spaltenvektoren lin.a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:33 Mi 14.03.2012
Autor: racy90

Hallo,

Ich hätte mal eine Frage.

Ich weiß zwar wenn die Determinante einer Matrix=0 sind die Vektoren lin.abhängig.

Aber warum ist das so bzw wie kann ich das zeigen?

        
Bezug
Det(A)=0 Spaltenvektoren lin.a: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Mi 14.03.2012
Autor: Schadowmaster

moin racy,

Hast du eine $n [mm] \times [/mm] n$ Matrix über einem Körper, dessen Determinante gleich 0 ist, so ist diese Matrix sicher nicht invertierbar (nimm an sie sei es, führe das zu einem Widerspruch).
Es ist aber eine $n [mm] \times [/mm] n$ Matrix genau dann invertierbar, wenn die Spalten linear unabhängig sind, denn dann sind sie (über dem Körper [mm] $\IK$) [/mm] eine Basis des [mm] $\IK^n$. [/mm]
Wenn du das bereits weißt dann versuch mal dir zu überlegen, wieso eine Matrix mit Determinante 0 nicht invertierbar sein kann.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]