matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikDelta-Distribution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Delta-Distribution
Delta-Distribution < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Distribution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Di 20.09.2011
Autor: LordPippin

Hallo,
ich habe eine Frage zur Delta-Distribution.
Es gilt ja [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-\vec{r}_{0}) [/mm]
Hier fängt es schon an. Die Delta-Distribution ist mir bekannt, wenn ich sie integriere. Aber ohne Integral weiß ich nicht so recht, wie ich sie zu deuten habe.
Es gilt ja [mm] \delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \mbox{ gerade} \\ 1, & \mbox{für } \vec{r}=\vec{r}_{0} \mbox{ ungerade} \end{cases} [/mm]

Die Frage bezieht sich im Speziellen auf Spiegelladungen.
Ich habe bei x=a eine Ladung q und bei x=-a eine Spiegelladung -q. Ich erhalte ja dann: [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})+4{\pi}q\delta(\vec{r}+a\vec{e}_{x}) [/mm] (bis jetzt nur eingesetzt)
Jetzt muss im rechten Abschnitt ja [mm] \Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x}) [/mm] gelten. Folglich muss [mm] 4{\pi}q\delta(\vec{r}+a\vec{e}_{x})=0 [/mm] sein, also [mm] \delta(\vec{r}+a\vec{e}_{x})=0. [/mm] Wird die Delta-Distribution jetzt Null, da es im rechten (positiven) Raum keinen [mm] \vec{r} [/mm] mit [mm] \vec{r}+a\vec{e}_{x}=0 [/mm] gibt? Also, da [mm] \vec{r}+a\vec{e}_{x}{\not=}0 [/mm] , [mm] \forall \vec{r}= \vektor{x \\ y \\z}, [/mm] mit [mm] x\ge [/mm] 0.
Ich hoffe, es ist einigermaßen verständlich :-)

Gruß

LordPippin

        
Bezug
Delta-Distribution: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 20.09.2011
Autor: rainerS

Hallo!

>  ich habe eine Frage zur Delta-Distribution.
> Es gilt ja [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-\vec{r}_{0})[/mm]
>  Hier fängt es schon an. Die Delta-Distribution ist mir
> bekannt, wenn ich sie integriere. Aber ohne Integral weiß
> ich nicht so recht, wie ich sie zu deuten habe.

Eigentlich gar nicht. Das Integral ist die Definition.

> Es gilt ja [mm]\delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \mbox{ gerade} \\ 1, & \mbox{für } \vec{r}=\vec{r}_{0} \mbox{ ungerade} \end{cases}[/mm]

Nein, das schon gar nicht. Das wäre eine normale Funktion, und das Integral wäre immer 0, da diese Funktion nur in einem Punkt von 0 verschieden ist (und gerade/ungerade ist hier Unsinn)

Was du oft siehst, ist

  [mm]\delta(\vec{r}-\vec{r}_{0})=\begin{cases} 0, & \mbox{für } \vec{r}\not=\vec{r}_{0} \\ \infty, & \mbox{für } \vec{r}=\vec{r}_{0}\end{cases}[/mm]

Aber auch mit dieser Definition ist das Integral (bei jeder sinnvollen Definition des Integralbegriffs) immer 0.

Das geht auf Paul Dirac zurück, aber ich bin mir sicher, dass er genau wusste, dass diese Form mathematisch keinen Sinn ergibt.

> Die Frage bezieht sich im Speziellen auf Spiegelladungen.
> Ich habe bei x=a eine Ladung q und bei x=-a eine
> Spiegelladung -q. Ich erhalte ja dann:
> [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})+4{\pi}q\delta(\vec{r}+a\vec{e}_{x})[/mm]
> (bis jetzt nur eingesetzt)
>  Jetzt muss im rechten Abschnitt ja
> [mm]\Delta\Phi=-4{\pi}q\delta(\vec{r}-a\vec{e}_{x})[/mm] gelten.
> Folglich muss [mm]4{\pi}q\delta(\vec{r}+a\vec{e}_{x})=0[/mm] sein,
> also [mm]\delta(\vec{r}+a\vec{e}_{x})=0.[/mm] Wird die
> Delta-Distribution jetzt Null, da es im rechten (positiven)
> Raum keinen [mm]\vec{r}[/mm] mit [mm]\vec{r}+a\vec{e}_{x}=0[/mm] gibt?

Genau genommen nicht, da [mm] $\delta$ [/mm] ohne das Integral keinen rechten Sinn ergibt. Aber es gilt natürlich, dass ein Integral über ein Volumen 0 ist, wenn das Volumen den Punkt [mm] $\vec{r}$ [/mm] mit [mm]\vec{r}+a\vec{e}_{x}=0[/mm] nicht enthält.

Sieh es so: das ist die Idealisierung einer sehr kleinen, homogenen kugelförmigen Ladungsverteilung mit Gesamtladung q am Punkt [mm] $a\vec{e}_x$. [/mm] Das ist viel anschaulicher als "eine endliche Ladung mit Radius 0 und unendliche hoer Ladungsdichte".

Die Spiegelladung einer solchen Ladungsverteilung ist dann ebenso sehr klein, homogen und kugelförmig.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]