matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenDelta-Distribution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Delta-Distribution
Delta-Distribution < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Distribution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Di 27.02.2007
Autor: xmaster1123

Aufgabe
Handelt es sich bei der Form [mm] N*\bruch{\Gamma*(x-x_{0})^{2}}{((x-x_{0})^{2}+\Gamma^{2})^{2}} [/mm] mit [mm] \Gamma\to0 [/mm] um eine Darstellung der Delta-Distribution? Wie lautet der Normierungsfaktor N?

Ich schaffe es die Form in einen Anteil mit Breit-Wigner-Form und einen "Restterm" zu zerlegen. Die Breit-Wigner-Form gilt ja als Darstellung der Delta-Distribution, aber was ist mit dem Rest? Oder muss man die Zerlegung evtl. garnicht machen sondern kann es auf einem anderen Weg zeigen? Dann waere der zweite Aufgabenteil auch sinnvoll.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Delta-Distribution: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 27.02.2007
Autor: wauwau


> Handelt es sich bei der Form
> [mm]N*\bruch{\Gamma*(x-x_{0})^{2}}{((x-x_{0})^{2}+\Gamma^{2})^{2}}[/mm]
> mit [mm]\Gamma\to0[/mm] um eine Darstellung der Delta-Distribution?
> Wie lautet der Normierungsfaktor N?
>  Ich schaffe es die Form in einen Anteil mit
> Breit-Wigner-Form und einen "Restterm" zu zerlegen. Die
> Breit-Wigner-Form gilt ja als Darstellung der
> Delta-Distribution, aber was ist mit dem Rest? Oder muss
> man die Zerlegung evtl. garnicht machen sondern kann es auf
> einem anderen Weg zeigen? Dann waere der zweite
> Aufgabenteil auch sinnvoll.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

du brauchst ja im Prinzip N nur so zu wählen dass
[mm]N*\integral_{-\infty}^{\infty}{\bruch{\Gamma*(x-x_{0})^{2}}{((x-x_{0})^{2}+\Gamma^{2})^{2}} dx}=1 [/mm] mit [mm]\Gamma\to0[/mm]

oder aber durch die Translationsinvarianz und der Symmetrie des Integranden
[mm]2N*\integral_{0}^{\infty}{\bruch{\Gamma*x^{2}}{(x^{2}+\Gamma^{2})^{2}} dx}=1[/mm]  mit [mm] \Gamma\to0[/mm]

Substitution  mit [mm]x = \Gamma*tg(y)[/mm] eliminiert das [mm] \Gamma [/mm] und
ergibt

[mm] 2N*\integral_{0}^{\bruch{\pi}{2}}{sin^{2}(x)dx}=1[/mm]  mit [mm] \Gamma\to0[/mm]

und daraus da
[mm]\integral_{0}^{\bruch{\pi}{2}}{sin^{2}(x)dx} = \bruch{\pi}{4}[/mm]

[mm]N = \bruch{2}{\pi}[/mm]







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]