Definitionsfrage Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
Unsere Definition eines Maßes war folgende:
Sei X eine Menge
Ist A eine sigma-Algebra über X und
[mm] \mu: A\to [0,\infty] [/mm] sigma-additiv, dann heißt [mm] \mu [/mm] ein Maß auf A und [mm] (X,A,\mu) [/mm] heißt Maßraum.
Da [mm] \mu [/mm] sigma-additiv ist, folgt: [mm] \mu [/mm] ist
- sigma-subadditiv,
- additiv,
- subadditiv.
Jetzt hatten wir folgende Aufgabe:
[mm] B\subset [/mm] P(X) war gegeben (P(X) soll die Potenzmenge von X sein) und eine Abbildung
[mm] \mu: B\to [0,\infty].
[/mm]
B war eine Algebra, aber keine sigma-Algebra.
Die Aufgabenstellung war:
Ist [mm] \mu [/mm] ein additives oder subadditives Maß?
Das passt nun garnicht mit unserer Definition zusammen. Ein Maß muss laut Def. ja auf einer Sigma-Algebra definiert sein und ist dann auch immer additiv und subadditiv. Vermutlich sollte man zeigen, ob [mm] \mu [/mm] als Abbildung additiv oder subadditiv ist?
Jetzt ist eine andere Aufgabenstellung wieder ähnlich formuliert.
Man soll zeigen, dass
[mm] \mu=\summe_{k=0}^{\infty}s_{k}\delta_{a_{k}} [/mm] ein additives Maß auf P(X) ist, wobei X eine nicht leere Menge, [mm] s_{k}>0, \summe_{k=0}^{\infty}s_{k}<\infty, a_{k} \in [/mm] X, [mm] a_{k} [/mm] paarweise disjunkt und [mm] \delta_{a_{k}} [/mm] das Dirac-Maß mit Träger in a ist.
Was soll ich hier denn nun tun? Zeigen, dass [mm] \mu [/mm] ein Maß ist, oder zeigen, dass die Abbildung [mm] \mu [/mm] additiv ist? Ich will keine Lösungshinweise für die Aufgabe, sondern nur wissen, wie das mit dem "additven Maß" gemeint ist.
Danke an jeden, der hier für Entwirrung sorgen kann und das auch tut!
LG,
freimann
Und das noch:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:22 Fr 31.12.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|