matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesDefinitionsbereich
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:46 Sa 23.01.2016
Autor: Jops

Aufgabe
[mm] ln\wurzel[4]{5x^2+5} [/mm]


Also ich such den Definitionsbereich ln>0
[mm] D=\{\wurzel[4]{5x^2+5}>0\}=\{5x^2+5 >0\}=\{x^2>1\}=[\wurzel{1},\infty] [/mm]

stimmt das so?


        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Sa 23.01.2016
Autor: Gonozal_IX

Hiho,

> [mm]ln\wurzel[4]{5x²+5}[/mm]

Im Quellcode erkennt man: Du meinst eigenlicht [mm]\ln\wurzel[4]{5x^2+5}[/mm]

Tipp: Schreibe den ln als \ln und Potenzen machst du mit x^2

>  Also ich such den Definitionsbereich
> ln>0

Es ist klar war du meinst, aber: Sauberer Formulieren. Du meinst: Das Argument des [mm] \ln [/mm] muss größer Null sein.

>  D = [mm]\{\wurzel[4]{5x^2+5}>0\}[/mm]

[ok]
Auch hier ein Tipp: Geschweifte Klammern machst du mit \{

> = [mm] \{5x^2+5 >0\} [/mm]

[ok]

= [mm]\{x^2>1\}[/mm]
[notok]

Schau da nochmal nach, insbesondere mach nicht mehrere Schritte auf einmal.

Gruß,
Gono


Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 23.01.2016
Autor: Jops

Vielen Dank für die Antwort
5x²+5>0
5x²>-5  /:5
x²> -1 /:-1
-x²< 1 /wurzel
|x|< [mm] \wurzel{1} [/mm] / x > 0, da ln
[mm] x<\wurzel{1} [/mm]

stimmt das`?

Bezug
                        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Sa 23.01.2016
Autor: M.Rex

Hallo

> Vielen Dank für die Antwort
> 5x²+5>0
> 5x²>-5 /:5
> x²> -1 /:-1

Hier kannst du aufhören, denn [mm] x^{2} [/mm] ist immer positiv.
Also ist [mm] x^{2}>-1 [/mm] für alle x erfüllt.

> -x²< 1 /wurzel
> |x|< [mm]\wurzel{1}[/mm] / x > 0, da ln
> [mm]x<\wurzel{1}[/mm]

Diese folgenden Umformungen sind leider gruselig, das stimmt so nicht.
Erstens kannst du aus dem (definitiv negativen Wert) [mm] -x^{2} [/mm] keine Wurzel ziehen.
Zweitens wären, wenn du die Wurzel ziehen könntest, zwei Lösungen vorhanden, denn sowohl [mm] 1^{2}=1 [/mm] als auch [mm] (-1)^{2}=1 [/mm]

Das x>0, das du durch den ln heranholst, macht dann aber auch keinen Sinn mehr, weil du in dieser Aufgabe ja die [mm] 5x^{2}+5 [/mm] innerhalb des ln hast, und das schon >0 gesetzt hast.

>

> stimmt das'?

Marius

Bezug
        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Sa 23.01.2016
Autor: fred97

5>0, [mm] x^2 \ge [/mm] 0, also ist [mm] 5x^2+5 \ge [/mm] 5

Fred

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]