matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenDefinition elliptisch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Definition elliptisch
Definition elliptisch < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition elliptisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:00 Di 27.01.2015
Autor: moerni

Hallo,

Ich habe Fragen zur Definition "elliptisch". Wir haben das in der Vorlesung so definiert:

Betrachte die PDGL
[mm] \sum_{|\alpha|=2} a_\alpha [/mm] (x) [mm] \partial^{\alpha} [/mm] u(x) + [mm] F(x,u(x),\nabla [/mm] u(x)) = 0
Der Ausdruck
[mm] \sum_{|\alpha|=2} a_\alpha [/mm] (x) [mm] \partial^{\alpha} [/mm] u(x) = [mm] \sum_{i,j=1}^n A_{ij} [/mm] (x) [mm] \frac{\partial^2 u(x)}{\partial x_i \partial x_j} [/mm]
heißt Hauptteil der Gleichung. Die Gleichung heißt elliptisch, falls A(x) nur positive oder nur negative Eigenwerte hat.

Soweit ok. Jetzt lese ich im Evans nach und sehe folgendes: Betrachte
Lu = [mm] -\sum_{i,j=1}^n a^{ij} [/mm] (x) [mm] u_{x_i x_j} [/mm] + [mm] \sum_{i=1}^n b^i [/mm] (x) [mm] u_{x_i} [/mm] + c(x) u
Dann heißt L (gleichmäßig) elliptisch, falls [mm] \xi^T [/mm] A(x) [mm] \xi \geq \theta [/mm] | [mm] \xi|^2 [/mm] f.f.a. x und alle [mm] \xi. [/mm]

Aus dieser Definition von Evans würde dann ja folgen, dass A(x) positiv definit sein muss. Was ist dann mit der Poisson Gleichung [mm] \Delta [/mm] u = f...? Die wäre nach der Definition ja dann nicht elliptisch, sondern nur [mm] -\Delta [/mm] u = f.

Ich wäre froh, wenn mir jemand mit den beiden verschiedenen Definitonen weiterhelfen könnte. Sind beide richtig? Folgt die eine aus der anderen? Kann man OE annehmen, dass A positiv definit sein soll?

LG moerni

        
Bezug
Definition elliptisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 31.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]